Commission Delegated Regulation (EU) 2017/654 of 19 December 2016 supplementing R... (32017R0654)
INHALT
Commission Delegated Regulation (EU) 2017/654 of 19 December 2016 supplementing Regulation (EU) 2016/1628 of the European Parliament and of the Council with regard to technical and general requirements relating to emission limits and type-approval for internal combustion engines for non-road mobile machinery
- COMMISSION DELEGATED REGULATION (EU) 2017/654
- of 19 December 2016
- supplementing Regulation (EU) 2016/1628 of the European Parliament and of the Council with regard to technical and general requirements relating to emission limits and type-approval for internal combustion engines for non-road mobile machinery
- Article 1
- Definitions
- Article 2
- Requirements for any other specified fuels, fuel mixtures or fuel emulsions
- Article 3
- Arrangements with regard to conformity of production
- Article 4
- Methodology for adapting the emission laboratory test results to include the deterioration factors
- Article 5
- Requirements with regard to emission control strategies, NO
- Article 6
- Measurements and tests with regard to the area associated with the non-road steady-state test cycle
- Article 7
- Conditions and methods for the conduct of tests
- Article 8
- Procedures for the conduct of tests
- Article 9
- Procedures for emission measurement and sampling
- Article 10
- Apparatus for the conduct of tests and for emission measurement and sampling
- Article 11
- Method for data evaluation and calculations
- Article 12
- Technical characteristics of the reference fuels
- Article 13
- Detailed technical specifications and conditions for delivering an engine separately from its exhaust after-treatment system
- Article 14
- Detailed technical specifications and conditions for the temporary placing on the market for the purposes of field testing
- Article 15
- Detailed technical specifications and conditions for special purpose engines
- Article 16
- Acceptance of equivalent engine type-approvals
- Article 17
- Details of the relevant information and instructions for OEMs
- Article 18
- Details of the relevant information and instructions for end-users
- Article 19
- Performance standards and assessment of technical services
- Article 20
- Characteristics of the steady-state and transient test cycles
- Article 21
- Entry into force and application
- ANNEXES
- ANNEX I
- 1.
- 1.2. Requirements for a standard fuel range (diesel, petrol) engine
- 1.3. Requirements for a fuel-specific (ED 95 or E 85) engine
- 2.
- 2.3. Requirements for a universal fuel range engine
- 2.4. Requirements for a restricted fuel range engine
- 2.4.1. For engines fuelled with CNG and designed for operation on either the range of H-gases or on the range of L-gases
- 2.4.2. For engines fuelled with natural gas or LPG and designed for operation on one specific fuel composition
- 2.5. Requirements for a fuel-specific engine fuelled with liquefied natural gas/liquefied biomethane (LNG)
- 2.5.1. Fuel-specific engine fuelled with liquefied natural gas/liquefied biomethane (LNG)
- 2.5.2. Fuel-specific engine fuelled with Liquefied Natural Gas (LNG)
- 2.6. EU type-approval of a member of a family
- 2.7. Additional requirements for dual-fuel engines
- Appendix 1
- ANNEX II
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 6.5. Non-compliance of gaseous-fuelled engines
- Appendix 1
- ANNEX III
- 1.
- 2.
- 3.
- 3.1. Selection of engines for establishing emission durability period deterioration factors
- 3.2. Determination of emission durability period deterioration factors
- 3.2.1. General
- 3.2.2. Service accumulation schedule
- 3.2.2.1. In-service and dynamometer service accumulation
- 3.2.3. Engine testing
- 3.2.3.1. Engine stabilisation
- 3.2.3.2. Service accumulation testing
- 3.2.4. Reporting
- 3.2.5. Determination of deterioration factors
- 3.2.6. Assigned deterioration factors
- 3.2.7. Application of deterioration factors
- 3.3. Checking of conformity of production
- 3.4. Maintenance
- 3.4.1. Scheduled emission-related maintenance
- 3.4.2. Changes to scheduled maintenance
- 3.4.3. Non-emission-related scheduled maintenance
- 3.5. Repair
- 4.
- 4.4. EDP categories
- ANNEX IV
- 1.
- 1.2. Ambient temperature
- 2.
- 2.2. Requirements for base emission control strategy
- 2.3. Requirements for auxiliary emission control strategy
- 2.3.4. Cold temperature operation
- 2.4. Control conditions
- 2.6. Documentation requirements
- 3.
- 4.
- Appendix 1
- 1.
- 2.
- 2.1. Required information
- 2.2. Operating conditions
- 2.3. Reagent freeze protection
- 2.3.2. Reagent tank and dosing system
- 2.3.2.2. Design criteria for a heated system
- 2.3.3. Activation of the operator warning and inducement system for a non-heated system
- 2.4. Diagnostic requirements
- 2.4.2 Requirements for recording Diagnostic Trouble Codes (DTCs)
- 2.4.3. Requirements for erasing Diagnostic trouble codes (DTCs)
- 2.4.6. NCD engine family
- 2.4.6.1. Parameters defining an NCD engine family
- 3.
- 4.
- 5.
- 5.3. Low-level inducement system
- 5.4. Severe inducement system
- 6.
- 6.1. Reagent level indicator
- 6.2. Activation of the operator warning system
- 6.3 Activation of the operator inducement system
- 7.
- 7.2. Activation of the operator warning system
- 7.3 Activation of the operator inducement system
- 8.
- 8.2. Reagent dosing activity counter
- 8.3. Activation of the operator warning system
- 8.4. Activation of the operator inducement system
- 9.
- 9.2. Monitoring requirements
- 9.2.2. EGR valve counter
- 9.2.3. NCD system counter(s)
- 9.3. Activation of the operator warning system
- 9.4. Activation of the operator inducement system
- 10.
- 10.1. General
- 10.2. Engine families and NCD engine families
- 10.3. Demonstration of the warning system activation
- 10.3.2. Selection of the failures to be tested
- 10.3.3. Demonstration
- 10.3.3.5. Detection of failures other than lack of reagent.
- 10.3.3.6. Detection in case of lack of reagent availability
- 10.3.3.7. NCD test cycle
- 10.4. Demonstration of the inducement system
- 10.4.5. Demonstration test of the low-level inducement system
- 10.4.6. Demonstration test of the severe inducement system
- 11.
- 11.2. Activation and deactivation mechanisms of the warning system
- 11.2.2.1 Requirements for erasing ‘NO
- 11.2.2.1.1. Erasing/resetting ‘NO
- 11.3. Activation and deactivation mechanism of the operator inducement system
- 11.4. Counter mechanism
- 11.4.1. General
- 11.4.2. Principle of counters mechanism
- 12.
- 13.
- Appendix 2
- 1.
- 2.
- 3.
- 4.
- Appendix 3
- 1.
- 2.
- 3.
- 4.
- Appendix 4
- 1.
- 2.
- 2.1. Required information
- 2.2. Operating conditions
- 2.3. Diagnostic requirements
- 2.3.2. Requirements for recording Diagnostic Trouble Codes (DTCs)
- 2.3.6. PCD engine family
- 2.3.6.1. Parameters defining a PCD engine family
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 8.2. Monitoring of loss of the particulate after-treatment system function
- 8.3. Monitoring of failures of the PCD system
- 9.
- 9.1. General
- 9.2. Engine families and PCD engine families
- 9.3. Demonstration of the warning system activation
- 9.3.2. Selection of the failures to be tested
- 9.3.3. Demonstration
- 9.3.3.5. Detection of failures
- 9.3.3.6. PCD test cycle
- 9.3.3.7 Configuration for demonstration of the warning system activation
- ANNEX V
- 1.
- 2.
- 2.1. Control area for engines tested on NRSC cycle C1
- 2.2. Control area for engines tested on NRSC cycles D2, E2 and G2
- 2.3. Control area for engines tested on NRSC cycle E3
- 3.
- 4.
- ANNEX VI
- 1.
- 2.
- 3.
- 4.
- 5.
- 5.1. Emissions of gaseous and particulate pollutants and of CO
- 5.1.1. Equivalency
- 5.2. General requirements on the test cycles
- 5.2.5. Test speeds
- 5.2.5.1. Maximum test speed (MTS)
- 5.2.5.1.1. Calculation of MTS
- 5.2.5.1.2. Use of a declared MTS
- 5.2.5.1.3. Use of an adjusted MTS
- 5.2.5.2. Rated speed
- 5.2.5.3. Maximum torque speed for variable-speed engines
- 5.2.5.4. Intermediate speed
- 5.2.5.5. Idle speed
- 5.2.5.6. Test speed for constant-speed engines
- 5.2.6. Torque and Power
- 5.2.6.1 Torque
- 5.2.6.2. Power
- 6.
- 6.1. Laboratory test conditions
- 6.2. Engines with charge-air cooling
- 6.3. Engine power
- 6.3.1. Basis for emission measurement
- 6.3.2. Auxiliaries to be fitted
- 6.3.3. Auxiliaries to be removed
- 6.3.4. Determination of auxiliary power
- 6.3.5. Engine cycle work
- 6.4. Engine intake air
- 6.4.1. Introduction
- 6.4.2. Intake air pressure restriction
- 6.5. Engine exhaust system
- 6.6. Engine with exhaust after-treatment system
- 6.6.1. Continuous regeneration
- 6.6.2. Infrequent regeneration
- 6.6.2.1. Requirement for establishing adjustment factors using NRTC, LSI-NRTC or RMC
- 6.6.2.2. Requirement for establishing adjustment factors using discrete-mode NRSC testing
- 6.6.2.3. General procedure for developing infrequent regeneration adjustment factors (IRAFs)
- 6.6.2.4. Application of adjustment factors
- 6.7. Cooling system
- 6.8. Lubricating oil
- 6.9. Specification of the reference fuel
- 6.10. Crankcase emissions
- 7. Test procedures
- 7.1. Introduction
- 7.2. Principle of emission measurement
- 7.2.1. Mass of constituent
- 7.2.1.1. Continuous sampling
- 7.2.1.2. Batch sampling
- 7.2.1.3. Combined sampling
- 7.2.2. Work determination
- 7.3. Verification and calibration
- 7.3.1. Pre-test procedures
- 7.3.1.1. Preconditioning
- 7.3.1.1.1. Preconditioning for cold-start run of NRTC
- 7.3.1.1.2. Preconditioning for hot-start run of NRTC or for LSI-NRTC
- 7.3.1.1.3. Preconditioning for discrete-mode NRSC
- 7.3.1.1.4. Preconditioning for RMC
- 7.3.1.1.5. Engine cool-down (NRTC)
- 7.3.1.2. Verification of HC contamination
- 7.3.1.3. Preparation of measurement equipment for sampling
- 7.3.1.4. Calibration of gas analyzers
- 7.3.1.5. PM filter preconditioning and tare weighing
- 7.3.2. Post-test procedures
- 7.3.2.1. Verification of proportional sampling
- 7.3.2.2. Post-test PM conditioning and weighing
- 7.3.2.3. Analysis of gaseous batch sampling
- 7.3.2.4. Drift verification
- 7.4. Test cycles
- 7.4.1. Steady-state test cycles
- 7.4.1.1. Discrete-mode NRSC
- 7.4.1.2. Ramped modal NRSC
- 7.4.2. Transient (NRTC and LSI-NRTC) test cycles
- 7.4.2.1. Test sequence for NRTC
- 7.4.2.2. Test sequence for LSI-NRTC
- 7.5. General test sequence
- 7.5.1. Engine starting, and restarting
- 7.5.1.1. Engine start
- 7.5.1.2. Engine stalling
- 7.5.1.3 Engine operation
- 7.6. Engine mapping
- 7.6.1. Engine mapping for variable-speed NRSC
- 7.6.2. Engine mapping for NRTC and LSI-NRTC
- 7.6.3. Engine mapping for constant-speed NRSC
- 7.6.3.1. Rated power check for engines to be tested on cycles D2 or E2
- 7.6.3.2. Mapping procedure for constant-speed NRSC
- 7.7. Test cycle generation
- 7.7.1. Generation of NRSC
- 7.7.1.1. Generation of NRSC test speeds for engines tested with both NRSC and either NRTC or LSI-NRTC.
- 7.7.1.2. Generation of NRSC test speeds for engines only tested with NRSC
- 7.7.1.3. Generation of NRSC load for each test mode
- 7.7.2. Generation of NRTC & LSI-NRTC speed and load for each test point (denormalization)
- 7.7.2.1. Reserved
- 7.7.2.2. Denormalization of engine speed
- 7.7.2.3 Denormalization of engine torque
- (a) Declared minimum torque
- (b) Adjustment of engine torque due to auxiliaries fitted for the emissions test
- 7.7.2.4. Example of denormalization procedure
- 7.8. Specific test cycle running procedure
- 7.8.1. Emission test sequence for discrete-mode NRSC
- 7.8.1.1. Engine warming-up for steady state discrete-mode NRSC
- 7.8.1.2. Performing discrete-mode NRSC
- 7.8.1.3. Validation criteria
- 7.8.2. Emission test sequence for RMC
- 7.8.2.1. Engine warming-up
- 7.8.2.2. Performing an RMC
- 7.8.2.3. Emission test sequence
- 7.8.2.4. Validation criteria
- 7.8.3. Transient (NRTC and LSI-NRTC) test cycles
- 7.8.3.1. Performing an NRTC test
- 7.8.3.2. Performing an LSI-NRTC test
- 7.8.3.3. Cycle validation criteria for transient (NRTC and LSI-NRTC) test cycles
- 7.8.3.4. Calculation of cycle work
- 7.8.3.5. Validation statistics (see Appendix 2 of Annex VII)
- 8. Measurement procedures
- 8.1. Calibration and performance checks
- 8.1.1. Introduction
- 8.1.2. Summary of calibration and verification
- 8.1.3. Verifications for accuracy, repeatability, and noise
- 8.1.4. Linearity verification
- 8.1.4.1. Scope and frequency
- 8.1.4.2. Performance requirements
- 8.1.4.3. Procedure
- 8.1.4.4. Reference signals
- 8.1.4.5. Measurement systems that require linearity verification
- 8.1.5. Continuous gas analyser system-response and updating-recording verification
- 8.1.5.1. Scope and frequency
- 8.1.5.2. Measurement principles
- 8.1.5.3. System requirements
- 8.1.5.4. Procedure
- 8.1.5.5. Performance evaluation
- 8.1.6. Response time verification for compensation type analysers
- 8.1.6.1. Scope and frequency
- 8.1.6.2. Measurement principles
- 8.1.6.3. System requirements
- 8.1.6.4. Procedure
- 8.1.7. Measurement of engine parameters and ambient conditions
- 8.1.7.1. Torque calibration
- 8.1.7.1.1. Scope and frequency
- 8.1.7.1.2. Dead-weight calibration
- 8.1.7.1.3. Strain gage or proving ring calibration
- 8.1.7.2. Pressure, temperature, and dew point calibration
- 8.1.8. Flow-related measurements
- 8.1.8.1. Fuel flow calibration
- 8.1.8.2. Intake air flow calibration
- 8.1.8.3. Exhaust gas flow calibration
- 8.1.8.4. Diluted exhaust gas flow (CVS) calibration
- 8.1.8.4.1. Overview
- 8.1.8.4.2. PDP calibration
- 8.1.8.4.3. CFV calibration
- 8.1.8.4.4. SSV calibration
- 8.1.8.4.5. Ultrasonic calibration (reserved)
- 8.1.8.5. CVS and batch sampler verification (propane check)
- 8.1.8.5.1. Introduction
- 8.1.8.5.2. Method of introducing a known amount of propane into the CVS system
- 8.1.8.5.3. Preparation of the propane check
- 8.1.8.5.4. Preparation of the HC sampling system for the propane check
- 8.1.8.5.5. Propane check performance
- 8.1.8.5.6. Evaluation of the propane check
- 8.1.8.5.7. PM secondary dilution system verification
- 8.1.8.5.8. Sample dryer verification
- 8.1.8.6. Periodic calibration of the partial flow PM and associated raw exhaust gas measurement systems
- 8.1.8.6.1. Specifications for differential flow measurement
- 8.1.8.6.2. Calibration of differential flow measurement
- 8.1.8.6.3. Special requirements for differential flow measurement
- 8.1.8.6.3.1. Pre-test check
- 8.1.8.6.3.2. Determination of the transformation time
- 8.1.8.7. Vacuum-side leak verification
- 8.1.8.7.1. Scope and frequency
- 8.1.8.7.2. Measurement principles
- 8.1.8.7.3. Low-flow leak test
- 8.1.8.7.4. Dilution-of-span-gas leak test
- 8.1.8.7.5. Vacuum-decay leak test
- 8.1.9. CO and CO
- 8.1.9.1. H
- 8.1.9.1.1. Scope and frequency
- 8.1.9.1.2. Measurement principles
- 8.1.9.1.3. System requirements
- 8.1.9.1.4. Procedure
- 8.1.9.2. H
- 8.1.9.2.1. Scope and frequency
- 8.1.9.2.2. Measurement principles
- 8.1.9.2.3. System requirements
- 8.1.9.2.4. Procedure
- 8.1.10. Hydrocarbon measurements
- 8.1.10.1. FID optimization and verification
- 8.1.10.1.1. Scope and frequency
- 8.1.10.1.2. Calibration
- 8.1.10.1.3. HC FID response optimization
- 8.1.10.1.4. HC FID CH
- 8.1.10.1.5. HC FID methane (CH
- 8.1.10.2. Non-stoichiometric raw exhaust gas FID O
- 8.1.10.2.1. Scope and frequency
- 8.1.10.2.2. Measurement principles
- 8.1.10.2.3. System requirements
- 8.1.10.2.4. Procedure
- 8.1.10.3. Non-methane cutter penetration fractions (Reserved)
- 8.1.11. NO
- 8.1.11.1. CLD CO
- 8.1.11.1.1. Scope and frequency
- 8.1.11.1.2. Measurement principles
- 8.1.11.1.3. System requirements
- 8.1.11.1.4. CO
- 8.1.11.1.5. H
- 8.1.11.2. CLD quench verification calculations
- 8.1.11.2.1. Amount of water expected during testing
- 8.1.11.2.2. Amount of CO
- 8.1.11.2.3. Combined H
- 8.1.11.3. NDUV analyzer HC and H
- 8.1.11.3.1. Scope and frequency
- 8.1.11.3.2. Measurement principles
- 8.1.11.3.3. System requirements
- 8.1.11.3.4. Procedure
- 8.1.11.4 Sample dryer NO
- 8.1.11.4.1. Scope and frequency
- 8.1.11.4.2. Measurement principles
- 8.1.11.4.3. System requirements
- 8.1.11.4.4. Procedure
- 8.1.11.5. NO
- 8.1.11.5.1. Scope and frequency
- 8.1.11.5.2. Measurement principles
- 8.1.11.5.3. System requirements
- 8.1.11.5.4 Procedure
- 8.1.12. PM measurements
- 8.1.12.1. PM balance verifications and weighing process verification
- 8.1.12.1.1. Scope and frequency
- 8.1.12.1.2. Independent verification
- 8.1.12.1.3. Zeroing and spanning
- 8.1.12.1.4. Reference sample weighing
- 8.1.12.2. PM sample filter buoyancy correction
- 8.1.12.2.1. General
- 8.1.12.2.2. PM sample filter density
- 8.1.12.2.3. Air density
- 8.1.12.2.4. Calibration weight density
- 8.1.12.2.5. Correction calculation
- 8.2. Instrument validation for test
- 8.2.1. Validation of proportional flow control for batch sampling and minimum dilution ratio for PM batch sampling
- 8.2.1.1. Proportionality criteria for CVS
- 8.2.1.1.1. Proportional flows
- 8.2.1.1.2. Constant flows
- 8.2.1.1.3. Demonstration of proportional sampling
- 8.2.1.2. Partial flow dilution system validation
- 8.2.2. Gas analyzer range validation, drift validation and drift correction
- 8.2.2.1. Range validation
- 8.2.2.1.1. Batch sampling
- 8.2.2.1.2. Continuous sampling
- 8.2.2.2. Drift validation and drift correction
- 8.2.3. PM sampling media (e.g. filters) preconditioning and tare weighing
- 8.2.3.1. Periodic verifications
- 8.2.3.2. Visual Inspection
- 8.2.3.3. Grounding
- 8.2.3.4. Unused sample media
- 8.2.3.5. Stabilization
- 8.2.3.6. Weighing
- 8.2.3.7. Buoyancy correction
- 8.2.3.8. Repetition
- 8.2.3.9. Tare-weighing
- 8.2.3.10. Substitution weighing
- 8.2.4. Post-test PM sample conditioning and weighing
- 8.2.4.1. Periodic verification
- 8.2.4.2. Removal from sealed containers
- 8.2.4.3. Electrical grounding
- 8.2.4.4. Visual inspection
- 8.2.4.5. Stabilisation of PM samples
- 8.2.4.6. Determination of post-test filter mass
- 8.2.4.7. Total mass
- 9.
- 9.1. Engine dynamometer specification
- 9.1.1. Shaft work
- 9.1.2. Transient (NRTC and LSI-NRTC) test cycles
- 9.1.3. Engine accessories
- 9.1.4. Engine fixture and power transmission shaft system (category NRSh)
- 9.2. Dilution procedure (if applicable)
- 9.2.1. Diluent conditions and background concentrations
- 9.2.2. Full flow system
- 9.2.3. Partial flow dilution (PFD) system
- 9.2.3.1. Description of partial flow system
- 9.2.3.2. Dilution
- 9.2.3.3. Applicability
- 9.2.3.4. Calibration
- 9.3. Sampling procedures
- 9.3.1. General sampling requirements
- 9.3.1.1. Probe design and construction
- 9.3.1.1.1. Mixing chamber (category NRSh)
- 9.3.1.2. Transfer lines
- 9.3.1.3. Sampling methods
- 9.3.2. Gas sampling
- 9.3.2.1. Sampling probes
- 9.3.2.1.1. Mixing chamber (Category NRSh)
- 9.3.2.2. Transfer lines
- 9.3.2.3. Sample-conditioning components
- 9.3.2.3.1. Sample dryers
- 9.3.2.3.1.1. Requirements
- 9.3.2.3.1.2. Type of sample dryers allowed and procedure to estimate moisture content after the dryer
- 9.3.2.3.2. Sample pumps
- 9.3.2.3.3. Ammonia scrubbers
- 9.3.2.4. Sample storage media
- 9.3.3. PM sampling
- 9.3.3.1. Sampling probes
- 9.3.3.2. Transfer lines
- 9.3.3.3. Pre-classifier
- 9.3.3.4. Sample filter
- 9.3.3.4.1. Filter specification
- 9.3.3.4.2. Filter size
- 9.3.3.4.3. Dilution and temperature control of PM samples
- 9.3.3.4.4. Filter face velocity
- 9.3.3.4.5. Filter holder
- 9.3.4. PM-stabilization and weighing environments for gravimetric analysis
- 9.3.4.1. Environment for gravimetric analysis
- 9.3.4.2. Cleanliness
- 9.3.4.3. Temperature of the chamber
- 9.3.4.4. Verification of ambient conditions
- 9.3.4.5. Installation of balance
- 9.3.4.6. Static electric charge
- 9.4. Measurement instruments
- 9.4.1. Introduction
- 9.4.1.1. Scope
- 9.4.1.2. Instrument types
- 9.4.1.3. Redundant systems
- 9.4.2. Data recording and control
- 9.4.3. Performance specifications for measurement instruments
- 9.4.3.1. Overview
- 9.4.3.2. Component requirements
- 9.4.4. Measurement of engine parameters & ambient conditions
- 9.4.4.1. Speed and torque sensors
- 9.4.4.1.1. Application
- 9.4.4.1.2. Shaft work
- 9.4.4.2. Pressure transducers, temperature sensors, and dew point sensors
- 9.4.5. Flow-related measurements
- 9.4.5.1. Fuel flow meter
- 9.4.5.2. Intake-air flow meter
- 9.4.5.3. Raw exhaust flow meter
- 9.4.5.3.1. Component requirements
- 9.4.5.3.2. Flow meter response time
- 9.4.5.3.3. Exhaust gas cooling
- 9.4.5.4. Dilution air and diluted exhaust flow meters
- 9.4.5.4.1. Application
- 9.4.5.4.2. Component requirements
- 9.4.5.4.3. Exhaust gas cooling
- 9.4.5.5. Sample flow meter for batch sampling
- 9.4.5.6. Gas divider
- 9.4.6. CO and CO
- 9.4.7. Hydrocarbon measurements
- 9.4.7.1. Flame-ionization detector
- 9.4.7.1.1. Application
- 9.4.7.1.2. Component requirements
- 9.4.7.1.3. FID fuel and burner air
- 9.4.7.1.4. Reserved
- 9.4.7.1.5. Reserved
- 9.4.7.2. Reserved
- 9.4.8. NO
- 9.4.8.1. Chemiluminescent detector
- 9.4.8.1.1. Application
- 9.4.8.1.2. Component requirements
- 9.4.8.1.3. NO
- 9.4.8.1.4. Humidity effects
- 9.4.8.1.5. Response time
- 9.4.8.2. Non-dispersive ultraviolet analyzer
- 9.4.8.2.1. Application
- 9.4.8.2.2. Component requirements
- 9.4.8.2.3. NO
- 9.4.8.2.4. Humidity effects
- 9.4.9. O
- 9.4.10. Air-to-fuel ratio measurements
- 9.4.11. PM measurements with gravimetric balance
- 9.4.12. Ammonia (NH
- 9.5. Analytical gases and mass standards
- 9.5.1. Analytical gases
- 9.5.1.1. Gas specifications
- 9.5.1.2. Concentration and expiration date
- 9.5.1.3. Gas transfer
- 9.5.2. Mass standards
- Appendix 1
- 1.
- 1.1. Sampling
- 1.1.1. Diluent filtration
- 1.2. Compensating for particle number sample flow — full flow dilution systems
- 1.3. Compensating for particle number sample flow — partial flow dilution systems
- 1.3.3. Correction of PM measurement
- 1.3.4. Proportionality of partial flow dilution sampling
- 1.3.5. Particle number calculation
- 2.
- 2.1. Specification
- 2.1.1. System overview
- 2.1.2. General requirements
- 2.1.3. Specific requirements
- 2.1.4. Recommended system description
- 2.1.4.1. Sampling system description
- 2.1.4.2. Particle transfer system
- 2.1.4.3. Particle pre-classifier
- 2.1.4.4. Volatile particle remover (VPR)
- 2.1.4.4.1. First particle number dilution device (PND
- 2.1.4.4.2. Evaporation Tube (ET)
- 2.1.4.4.3. Second particle number dilution device (PND
- 2.1.4.5. Particle number counter (PNC)
- 2.2. Calibration/Validation of the particle sampling system
- 2.2.1. Calibration of the particle number counter
- 2.2.2. Calibration/Validation of the volatile particle remover
- 2.2.3. Particle number system check procedures
- Appendix 2
- Appendix 3
- 1.
- 2.
- 3.
- Appendix 4
- 2.1. Fourier Transform Infrared (hereinafter ‘FTIR’) analyser
- 2.1.1. Measurement principle
- 2.1.2. Installation and sampling
- 2.1.3. Cross interference
- 2.2. Non Dispersive Ultra Violet Resonance Absorption analyser (hereinafter ‘NDUV’)
- 2.2.1. Measurement Principle
- 2.2.2. Installation
- 2.2.3. Cross Sensitivity
- 2.3. Laser Infrared analyser
- 2.3.1. Measurement principle
- 2.3.2. Installation
- 2.3.3. Interference verification for NH
- 2.3.3.1. Scope and frequency
- 2.3.3.2. Measurement principles for interference verification
- 3. Emissions test procedure
- 3.1. Checking the analysers
- 3.2. Collection of emission relevant data
- 3.3. Operations after test
- 3.4. Analyser drift
- 4. Analyser specification and verification
- 4.1. Linearity requirements
- 4.2. Analyser specifications
- 4.2.1. Minimum detection limit
- 4.2.2. Accuracy
- 4.2.3. Zero drift
- 4.2.4. Span drift
- 4.2.5. System response time
- 4.2.6. Rise time
- 4.2.7. NH
- 4.2.8. Interference verification procedure
- 5. Alternative systems
- Appendix 5
- ANNEX VII
- 1.
- 1.1. General symbols
- 1.2. Subscripts
- 1.3. Symbols and abbreviations for the chemical components (used also as a subscript)
- 1.4. Symbols and abbreviations for the fuel composition
- 2.
- 2.1. Raw gaseous emissions
- 2.1.1. Discrete-mode NRSC tests
- 2.1.2. Transient (NRTC and LSI-NRTC) test cycles and RMC tests
- 2.1.3. Dry-to-wet concentration conversion
- 2.1.4. NO
- 2.1.5. Component specific factor u
- 2.1.5.1. Tabulated values
- 2.1.5.2. Calculated values
- 2.1.6. Mass flow rate of the exhaust gas
- 2.1.6.1. Air and fuel measurement method
- 2.1.6.2. Tracer measurement method
- 2.1.6.3. Air flow and air to fuel ratio measurement method
- 2.1.6.4. Carbon balance method, 1-step procedure
- 2.2. Diluted gaseous emissions
- 2.2.1. Mass of the gaseous emissions
- 2.2.2. Dry-to-wet concentration conversion
- 2.2.2.1. Diluted exhaust gas
- 2.2.2.2. Dilution factor
- 2.2.2.3. Dilution air
- 2.2.2.4. Determination of the background corrected concentration
- 2.2.3. Component specific factor u
- 2.2.4. Exhaust gas mass flow calculation
- 2.2.4.1. PDP-CVS system
- 2.2.4.2. CFV-CVS system
- 2.2.4.3. SSV-CVS system
- 2.3. Calculation of particulate emission
- 2.3.1. Transient (NRTC and LSI-NRTC) test cycles and RMC
- 2.3.1.1. Partial flow dilution system
- 2.3.1.1.1. Calculation based on sample ratio
- 2.3.1.1.2. Calculation based on dilution ratio
- 2.3.1.2. Full flow dilution system
- 2.3.1.2.1. Background correction
- 2.3.2. Calculation for discrete-mode NRSC
- 2.3.2.1. Dilution system
- 2.3.2.2. Calculation of the particulate mass flow rate
- 2.4. Cycle work and specific emissions
- 2.4.1. Gaseous emissions
- 2.4.1.1. Transient (NRTC and LSI-NRTC) test cycles and RMC
- 2.4.1.2. Discrete-mode NRSC
- 2.4.2. Particulate emissions
- 2.4.2.1. Transient (NRTC and LSI-NRTC) test cycles and RMC
- 2.4.2.2. Discrete-mode NRSC
- 2.4.3. Adjustment for emission controls that are regenerated on an infrequent (periodic) basis
- 2.4.4. Adjustment for deterioration factor
- 2.5. Diluted Exhaust Flow (CVS) Calibration and Related Calculations
- 2.5.1. Positive displacement pump (PDP)
- 2.5.2. Critical flow venturi (CFV)
- 2.5.3. Subsonic venturi (SSV)
- 2.6. Drift Correction
- 2.6.1. General procedure
- 2.6.2. Calculation procedure
- 3.
- 3.1. Subscripts
- 3.2. Symbols for chemical balance
- 3.3. Basic parameters and relationships
- 3.3.1. Dry air and chemical species
- 3.3.2. Wet air
- 3.3.2.1. Vapour pressure of water
- 3.3.2.2. Dew point
- 3.3.2.3. Relative humidity
- 3.3.2.4. Dew point determination from relative humidity and dry bulb temperature
- 3.3.3. Fuel properties
- 3.3.3.1. Calculation of carbon mass concentration w
- 3.3.4. Total HC (THC) concentration initial contamination correction
- 3.3.5. Flow-weighted mean concentration
- 3.4. Chemical balances of fuel, intake air, and exhaust gas
- 3.4.1. General
- 3.4.2. Procedures that require chemical balances
- 3.4.3. Chemical balance procedure
- 3.4.4. NO
- 3.5. Raw gaseous emissions
- 3.5.1. Mass of gaseous emissions
- 3.5.2. Dry-to-wet concentration conversion
- 3.5.3. Exhaust gas molar flow rate
- 3.6. Diluted gaseous emissions
- 3.6.1. Emission mass calculation and background correction
- 3.6.2. Dry-to wet concentration conversion
- 3.6.3. Exhaust gas molar flow rate
- 3.7. Determination of particulates
- 3.7.1. Sampling
- 3.7.2. Background correction
- 3.8. Cycle work and specific emissions
- 3.8.1. Gaseous emissions
- 3.8.1.1. Transient (NRTC and LSI-NRTC) test cycles and RMC
- 3.8.1.2. Discrete-mode NRSC
- 3.8.2. Particulate emissions
- 3.8.2.1. Transient (NRTC and LSI-NRTC) test cycles and RMC
- 3.8.2.2. Discrete-mode NRSC
- 3.8.3. Adjustment for emission controls that are regenerated on an infrequent (periodic) basis
- 3.8.4. Adjustment for deterioration factor
- 3.9. Diluted Exhaust Flow (CVS) Calibration and Related Calculations
- 3.9.1. Reference meter conversions
- 3.9.2. PDP calibration calculations
- 3.9.3. Venturi governing equations and permissible assumptions
- 3.9.4. SSV calibration
- 3.9.5. CFV calibration
- Appendix 1
- 1.
- 2.
- 3.
- 4.
- Appendix 2
- 1.
- 2.
- 3.
- 3.1. Based on CO
- 3.2. Based on CO
- 4.
- 4.1. Based on CO
- 4.2. Based on CO
- 5.
- Appendix 3
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- Appendix 4
- Appendix 5
- 1.
- 1.1. Time alignment
- 1.2. Determination of particle numbers for transient (NRTC and LSI-NRTC) test cycles and RMC with a partial flow dilution system
- 1.3. Determination of particle numbers for transient (NRTC and LSI-NRTC) test cycles and RMC with a full flow dilution system
- 1.4. Determination of particle numbers for discrete-mode NRSC with a partial flow dilution system
- 1.5. Determination of particle numbers for discrete-mode cycles with a full flow dilution system
- 2.
- 2.1. Calculation of the specific emissions for transient (NRTC and LSI-NRTC) test cycles and RMC
- 2.1.1. Weighted average NRTC test result
- 2.2. Calculation of the specific emissions for discrete-mode NRSC tests
- 2.3. Rounding of final results
- 2.4. Determination of particle number background
- Appendix 6
- 1.
- 2.
- ANNEX VIII
- 1.
- 2.
- 3.
- 3.1. Engines with operator-adjustable control of GER
- 4.
- 4.1. Operating modes of dual-fuel engines
- 4.1.1. Conditions for a dual-fuel engine to operate in liquid mode
- 4.1.2. Conditions for a dual-fuel engine to idle using liquid fuel exclusively
- 4.1.3. Conditions for a dual-fuel engine to warm-up or start using liquid fuel solely
- 4.2. Service mode
- 4.2.1. Conditions for dual-fuel engines to operate in service mode
- 4.2.2. Operability restriction in service mode
- 4.2.2.1. Requirement for engine categories other than IWP, IWA, RLL and RLR
- 4.2.2.2. Requirement for engine categories IWP, IWA, RLL and RLR
- 4.2.2.3. Activation of the operability restriction
- 4.2.2.4. Deactivation of the operability restriction
- 4.2.3. Unavailability of gaseous fuel when operating in a dual-fuel mode
- 4.2.3.1. Unavailability of gaseous fuel — empty gaseous fuel tank
- 4.2.3.2. Unavailability of gaseous fuel — malfunctioning gas supply
- 4.3. Dual-fuel indicators
- 4.3.1. Dual-fuel operating mode indicator
- 4.3.2. Empty gaseous fuel tank warning system (dual-fuel warning system)
- 4.3.2.1. Characteristics of the dual-fuel warning system
- 4.4. Communicated torque
- 4.4.1. Communicated torque when a dual-fuel engine operates in dual-fuel mode
- 4.4.2. Communicated torque when a dual-fuel engine operates in liquid-fuel mode
- 4.5. Additional requirements
- 5.
- 6.
- 6.4. Additional demonstration requirements in case of a Type 2 engine
- 6.5 Additional demonstration requirements in case of an engine with an operator-adjustable GER
- 6.6. Requirements for demonstrating the durability of a dual-fuel engine
- 6.7. Demonstration of the dual-fuel indicators, warning and operability restriction
- 7.
- 7.2. Additional NO
- Appendix 1
- 1.
- 1.1. Dual-fuel mode indicator
- 1.2. Liquid-fuel mode indicator
- 1.3. Service mode indicator
- 2.
- 3.
- Appendix 2
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 7.1. Mass-based emission calculation
- 7.1.1. Dry/wet correction
- 7.1.1.1. Raw exhaust gas
- 7.1.1.2. Diluted exhaust gas
- 7.1.2. NO
- 7.1.3. Partial flow dilution (PFS) and raw gaseous measurement
- 7.1.3.1. Determination of exhaust gas mass flow
- 7.1.3.2. Determination of the gaseous components
- 7.1.3.2.1. Mass per test of a gaseous emission
- 7.1.3.3. Particulate determination
- 7.1.3.4. Additional requirements regarding the exhaust gas mass flow meter
- 7.1.4. Full flow dilution measurement (CVS)
- 7.1.4.1. Determination of the background corrected concentrations (point 5.2.5)
- 7.1.5. Determination of molar component ratios
- 7.1.5.1. General
- 7.1.5.2. Calculation of the fuel mixture components
- 7.2. Molar-based emission calculation
- 7.2.1. NO
- 7.2.2. Determination of exhaust gas mass flow when not using a raw exhaust flow meter
- 7.2.3. Molar component ratios for determination of the gaseous components
- 7.2.3.1. Determination of molar component ratios
- 7.3. CO
- 7.3.1 CO
- Appendix 3
- ANNEX IX
- 1.
- 1.1. Type: Diesel (non-road gas-oil)
- 1.2. Type: Ethanol for dedicated compression ignition engines (ED95) (
- 2.
- 2.1. Type: Petrol (E10)
- 2.2. Type: Ethanol (E85)
- 3.
- 3.1. Type: LPG
- 3.2. Type: Natural Gas/ Biomethane
- 3.2.1. Specification for reference fuels supplied with fixed properties (e.g. from a sealed container)
- 3.2.2. Specification for reference fuel supplied from a pipeline with admixture of other gases with gas properties determined by on-site measurement
- Appendix 1
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 6.2 Open loop blend control system
- 6.3 Closed loop blend control system
- Appendix 2
- 1.
- 2.
- Appendix 3
- 1.
- 2.
- 3.
- ANNEX X
- 2.
- 3.
- ANNEX XI
- ANNEX XII
- ANNEX XIII
- ANNEX XIV
- ANNEX XV
- ANNEX XVI
- 1.
- 2.
- 3.
- ANNEX XVII
- Appendix 1
- Appendix 2
- Appendix 3
- 2.4.2.1
Feedback