DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 11 December 2018
on the promotion of the use of energy from renewable sources
(recast)
(Text with EEA relevance)
Article 1
Subject matter
Article 2
Definitions
Article 3
Binding overall Union target for 2030
Article 4
Support schemes for energy from renewable sources
Article 5
Opening of support schemes for electricity from renewable sources
Article 6
Stability of financial support
Article 7
Calculation of the share of energy from renewable sources
Article 8
Union renewable development platform and statistical transfers between Member States
Article 9
Joint projects between Member States
Article 10
Effects of joint projects between Member States
Article 11
Joint projects between Member States and third countries
Article 12
Effects of joint projects between Member States and third countries
Article 13
Joint support schemes
Article 14
Capacity increases
Article 15
Administrative procedures, regulations and codes
Article 16
Organisation and duration of the permit-granting process
Article 17
Simple-notification procedure for grid connections
Article 18
Information and training
Article 19
Guarantees of origin for energy from renewable sources
Article 20
Access to and operation of the grids
Article 21
Renewables self-consumers
Article 22
Renewable energy communities
Article 23
Mainstreaming renewable energy in heating and cooling
Article 24
District heating and cooling
Article 25
Mainstreaming renewable energy in the transport sector
Article 26
Specific rules for biofuels, bioliquids and biomass fuels produced from food and feed crops
Article 27
Calculation rules with regard to the minimum shares of renewable energy in the transport sector
Article 28
Other provisions on renewable energy in the transport sector
Article 29
Sustainability and greenhouse gas emissions saving criteria for biofuels, bioliquids and biomass fuels
Article 30
Verification of compliance with the sustainability and greenhouse gas emissions saving criteria
Article 31
Calculation of the greenhouse gas impact of biofuels, bioliquids and biomass fuels
Article 32
Implementing acts
Article 33
Monitoring by the Commission
Article 34
Committee procedure
Article 35
Exercise of the delegation
Article 36
Transposition
Article 37
Repeal
Article 38
Entry into force
Article 39
Addressees
ANNEX I
NATIONAL OVERALL TARGETS FOR THE SHARE OF ENERGY FROM RENEWABLE SOURCES IN GROSS FINAL CONSUMPTION OF ENERGY IN 2020
(1)
A. National overall targets
|
Share of energy from renewable sources in gross final consumption of energy, 2005 (S2005) |
Target for share of energy from renewable sources in gross final consumption of energy, 2020 (S2020) |
Belgium |
2,2 % |
13 % |
Bulgaria |
9,4 % |
16 % |
Czech Republic |
6,1 % |
13 % |
Denmark |
17,0 % |
30 % |
Germany |
5,8 % |
18 % |
Estonia |
18,0 % |
25 % |
Ireland |
3,1 % |
16 % |
Greece |
6,9 % |
18 % |
Spain |
8,7 % |
20 % |
France |
10,3 % |
23 % |
Croatia |
12,6 % |
20 % |
Italy |
5,2 % |
17 % |
Cyprus |
2,9 % |
13 % |
Latvia |
32,6 % |
40 % |
Lithuania |
15,0 % |
23 % |
Luxembourg |
0,9 % |
11 % |
Hungary |
4,3 % |
13 % |
Malta |
0,0 % |
10 % |
Netherlands |
2,4 % |
14 % |
Austria |
23,3 % |
34 % |
Poland |
7,2 % |
15 % |
Portugal |
20,5 % |
31 % |
Romania |
17,8 % |
24 % |
Slovenia |
16,0 % |
25 % |
Slovak Republic |
6,7 % |
14 % |
Finland |
28,5 % |
38 % |
Sweden |
39,8 % |
49 % |
United Kingdom |
1,3 % |
15 % |
ANNEX II
NORMALISATION RULE FOR ACCOUNTING FOR ELECTRICITY GENERATED FROM HYDROPOWER AND WIND POWER
N |
= |
reference year; |
QN(norm) |
= |
normalised electricity generated by all hydropower plants of the Member State in year N, for accounting purposes; |
Qi |
= |
the quantity of electricity actually generated in year i by all hydropower plants of the Member State measured in GWh, excluding production from pumped storage units using water that has previously been pumped uphill; |
Ci |
= |
the total installed capacity, net of pumped storage, of all hydropower plants of the Member State at the end of year i, measured in MW. |
N |
= |
reference year; |
QN(norm) |
= |
normalised electricity generated by all onshore wind power plants of the Member State in year N, for accounting purposes; |
Qi |
= |
the quantity of electricity actually generated in year i by all onshore wind power plants of the Member State measured in GWh; |
Cj |
= |
the total installed capacity of all the onshore wind power plants of the Member State at the end of year j, measured in MW; |
n |
= |
4 or the number of years preceding year N for which capacity and production data are available for the Member State in question, whichever is lower. |
N |
= |
reference year; |
QN(norm) |
= |
normalised electricity generated by all offshore wind power plants of the Member State in year N, for accounting purposes; |
Qi |
= |
the quantity of electricity actually generated in year i by all offshore wind power plants of the Member State measured in GWh; |
Cj |
= |
the total installed capacity of all the offshore wind power plants of the Member State at the end of year j, measured in MW; |
n |
= |
4 or the number of years preceding year N for which capacity and production data are available for the Member State in question, whichever is lower. |
ANNEX III
ENERGY CONTENT OF FUELS
Fuel |
Energy content by weight (lower calorific value, MJ/kg) |
Energy content by volume (lower calorific value, MJ/l) |
FUELS FROM BIOMASS AND/OR BIOMASS PROCESSING OPERATIONS |
||
Bio-Propane |
46 |
24 |
Pure vegetable oil (oil produced from oil plants through pressing, extraction or comparable procedures, crude or refined but chemically unmodified) |
37 |
34 |
Biodiesel - fatty acid methyl ester (methyl-ester produced from oil of biomass origin) |
37 |
33 |
Biodiesel - fatty acid ethyl ester (ethyl-ester produced from oil of biomass origin) |
38 |
34 |
Biogas that can be purified to natural gas quality |
50 |
— |
Hydrotreated (thermochemically treated with hydrogen) oil of biomass origin, to be used for replacement of diesel |
44 |
34 |
Hydrotreated (thermochemically treated with hydrogen) oil of biomass origin, to be used for replacement of petrol |
45 |
30 |
Hydrotreated (thermochemically treated with hydrogen) oil of biomass origin, to be used for replacement of jet fuel |
44 |
34 |
Hydrotreated oil (thermochemically treated with hydrogen) of biomass origin, to be used for replacement of liquefied petroleum gas |
46 |
24 |
Co-processed oil (processed in a refinery simultaneously with fossil fuel) of biomass or pyrolysed biomass origin to be used for replacement of diesel |
43 |
36 |
Co-processed oil (processed in a refinery simultaneously with fossil fuel) of biomass or pyrolysed biomass origin, to be used to replace petrol |
44 |
32 |
Co-processed oil (processed in a refinery simultaneously with fossil fuel) of biomass or pyrolysed biomass origin, to be used to replace jet fuel |
43 |
33 |
Co-processed oil (processed in a refinery simultaneously with fossil fuel) of biomass or pyrolysed biomass origin, to be used to replace liquefied petroleum gas |
46 |
23 |
RENEWABLE FUELS THAT CAN BE PRODUCED FROM VARIOUS RENEWABLE SOURCES, INCLUDING BIOMASS |
||
Methanol from renewable sources |
20 |
16 |
Ethanol from renewable sources |
27 |
21 |
Propanol from renewable sources |
31 |
25 |
Butanol from renewable sources |
33 |
27 |
Fischer-Tropsch diesel (a synthetic hydrocarbon or mixture of synthetic hydrocarbons to be used for replacement of diesel) |
44 |
34 |
Fischer-Tropsch petrol (a synthetic hydrocarbon or mixture of synthetic hydrocarbons produced from biomass, to be used for replacement of petrol) |
44 |
33 |
Fischer-Tropsch jet fuel (a synthetic hydrocarbon or mixture of synthetic hydrocarbons produced from biomass, to be used for replacement of jet fuel) |
44 |
33 |
Fischer-Tropsch liquefied petroleum gas (a synthetic hydrocarbon or mixture of synthetic hydrocarbons, to be used for replacement of liquefied petroleum gas |
46 |
24 |
DME (dimethylether) |
28 |
19 |
Hydrogen from renewable sources |
120 |
— |
ETBE (ethyl-tertio-butyl-ether produced on the basis of ethanol) |
36 (of which 37 % from renewable sources) |
27 (of which 37 % from renewable sources) |
MTBE (methyl-tertio-butyl-ether produced on the basis of methanol) |
35 (of which 22 % from renewable sources) |
26 (of which 22 % from renewable sources) |
TAEE (tertiary-amyl-ethyl-ether produced on the basis of ethanol) |
38 (of which 29 % from renewable sources) |
29 (of which 29 % from renewable sources) |
TAME (tertiary-amyl-methyl-ether produced on the basis of methanol) |
36 (of which 18 % from renewable sources) |
28 (of which 18 % from renewable sources) |
THxEE (tertiary-hexyl-ethyl-ether produced on the basis of ethanol) |
38 (of which 25 % from renewable sources) |
30 (of which 25 % from renewable sources) |
THxME (tertiary-hexyl-methyl-ether produced on the basis of methanol) |
38 of which 14 % from renewable sources) |
30 (of which 14 % from renewable sources) |
FOSSIL FUELS |
||
Petrol |
43 |
32 |
Diesel |
43 |
36 |
ANNEX IV
CERTIFICATION OF INSTALLERS
ANNEX V
RULES FOR CALCULATING THE GREENHOUSE GAS IMPACT OF BIOFUELS, BIOLIQUIDS AND THEIR FOSSIL FUEL COMPARATORS
A. TYPICAL AND DEFAULT VALUES FOR BIOFUELS IF PRODUCED WITH NO NET CARBON EMISSIONS FROM LAND-USE CHANGE
Biofuel production pathway |
Greenhouse gas emissions saving – typical value |
Greenhouse gas emissions saving – default value |
||||
sugar beet ethanol (no biogas from slop, natural gas as process fuel in conventional boiler) |
67 % |
59 % |
||||
sugar beet ethanol (with biogas from slop, natural gas as process fuel in conventional boiler) |
77 % |
73 % |
||||
sugar beet ethanol (no biogas from slop, natural gas as process fuel in CHP plant (*)) |
73 % |
68 % |
||||
sugar beet ethanol (with biogas from slop, natural gas as process fuel in CHP plant (*)) |
79 % |
76 % |
||||
sugar beet ethanol (no biogas from slop, lignite as process fuel in CHP plant (*)) |
58 % |
47 % |
||||
sugar beet ethanol (with biogas from slop, lignite as process fuel in CHP plant (*)) |
71 % |
64 % |
||||
corn (maize) ethanol (natural gas as process fuel in conventional boiler) |
48 % |
40 % |
||||
corn (maize) ethanol, (natural gas as process fuel in CHP plant (*)) |
55 % |
48 % |
||||
corn (maize) ethanol (lignite as process fuel in CHP plant (*)) |
40 % |
28 % |
||||
corn (maize) ethanol (forest residues as process fuel in CHP plant (*)) |
69 % |
68 % |
||||
other cereals excluding maize ethanol (natural gas as process fuel in conventional boiler) |
47 % |
38 % |
||||
other cereals excluding maize ethanol (natural gas as process fuel in CHP plant (*)) |
53 % |
46 % |
||||
other cereals excluding maize ethanol (lignite as process fuel in CHP plant (*)) |
37 % |
24 % |
||||
other cereals excluding maize ethanol (forest residues as process fuel in CHP plant (*)) |
67 % |
67 % |
||||
sugar cane ethanol |
70 % |
70 % |
||||
the part from renewable sources of ethyl-tertio-butyl-ether (ETBE) |
Equal to that of the ethanol production pathway used |
|||||
the part from renewable sources of tertiary-amyl-ethyl-ether (TAEE) |
Equal to that of the ethanol production pathway used |
|||||
rape seed biodiesel |
52 % |
47 % |
||||
sunflower biodiesel |
57 % |
52 % |
||||
soybean biodiesel |
55 % |
50 % |
||||
palm oil biodiesel (open effluent pond) |
32 % |
19 % |
||||
palm oil biodiesel (process with methane capture at oil mill) |
51 % |
45 % |
||||
waste cooking oil biodiesel |
88 % |
84 % |
||||
animal fats from rendering biodiesel (**) |
84 % |
78 % |
||||
hydrotreated vegetable oil from rape seed |
51 % |
47 % |
||||
hydrotreated vegetable oil from sunflower |
58 % |
54 % |
||||
hydrotreated vegetable oil from soybean |
55 % |
51 % |
||||
hydrotreated vegetable oil from palm oil (open effluent pond) |
34 % |
22 % |
||||
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill) |
53 % |
49 % |
||||
hydrotreated oil from waste cooking oil |
87 % |
83 % |
||||
hydrotreated oil from animal fats from rendering (**) |
83 % |
77 % |
||||
pure vegetable oil from rape seed |
59 % |
57 % |
||||
pure vegetable oil from sunflower |
65 % |
64 % |
||||
pure vegetable oil from soybean |
63 % |
61 % |
||||
pure vegetable oil from palm oil (open effluent pond) |
40 % |
30 % |
||||
pure vegetable oil from palm oil (process with methane capture at oil mill) |
59 % |
57 % |
||||
pure oil from waste cooking oil |
98 % |
98 % |
||||
|
B. ESTIMATED TYPICAL AND DEFAULT VALUES FOR FUTURE BIOFUELS THAT WERE NOT ON THE MARKET OR WERE ON THE MARKET ONLY IN NEGLIGIBLE QUANTITIES IN 2016, IF PRODUCED WITH NO NET CARBON EMISSIONS FROM LAND-USE CHANGE
Biofuel production pathway |
Greenhouse gas emissions saving - typical value |
Greenhouse gas emissions saving - default value |
wheat straw ethanol |
85 % |
83 % |
waste wood Fischer-Tropsch diesel in free-standing plant |
85 % |
85 % |
farmed wood Fischer-Tropsch diesel in free-standing plant |
82 % |
82 % |
waste wood Fischer-Tropsch petrol in free-standing plant |
85 % |
85 % |
farmed wood Fischer-Tropsch petrol in free-standing plant |
82 % |
82 % |
waste wood dimethylether (DME) in free-standing plant |
86 % |
86 % |
farmed wood dimethylether (DME) in free-standing plant |
83 % |
83 % |
waste wood methanol in free-standing plant |
86 % |
86 % |
farmed wood methanol in free-standing plant |
83 % |
83 % |
Fischer-Tropsch diesel from black-liquor gasification integrated with pulp mill |
89 % |
89 % |
Fischer-Tropsch petrol from black-liquor gasification integrated with pulp mill |
89 % |
89 % |
dimethylether (DME) from black-liquor gasification integrated with pulp mill |
89 % |
89 % |
Methanol from black-liquor gasification integrated with pulp mill |
89 % |
89 % |
the part from renewable sources of methyl-tertio-butyl-ether (MTBE) |
Equal to that of the methanol production pathway used |
C. METHODOLOGY
E |
= |
total emissions from the use of the fuel; |
eec |
= |
emissions from the extraction or cultivation of raw materials; |
el |
= |
annualised emissions from carbon stock changes caused by land-use change; |
ep |
= |
emissions from processing; |
etd |
= |
emissions from transport and distribution; |
eu |
= |
emissions from the fuel in use; |
esca |
= |
emission savings from soil carbon accumulation via improved agricultural management; |
eccs |
= |
emission savings from CO2 capture and geological storage; and |
eccr |
= |
emission savings from CO2 capture and replacement. |
EB |
= |
total emissions from the biofuel; and |
EF(t) |
= |
total emissions from the fossil fuel comparator for transport |
CO2 |
: |
1 |
N2O |
: |
298 |
CH4 |
: |
25 |
el |
= |
annualised greenhouse gas emissions from carbon stock change due to land-use change (measured as mass (grams) of CO2-equivalent per unit of biofuel or bioliquid energy (megajoules)). ‘Cropland’(6) and ‘perennial cropland’(7) shall be regarded as one land use; |
CSR |
= |
the carbon stock per unit area associated with the reference land-use (measured as mass (tonnes) of carbon per unit area, including both soil and vegetation). The reference land-use shall be the land-use in January 2008 or 20 years before the raw material was obtained, whichever was the later; |
CSA |
= |
the carbon stock per unit area associated with the actual land-use (measured as mass (tonnes) of carbon per unit area, including both soil and vegetation). In cases where the carbon stock accumulates over more than one year, the value attributed to CSA shall be the estimated stock per unit area after 20 years or when the crop reaches maturity, whichever the earlier; |
P |
= |
the productivity of the crop (measured as biofuel or bioliquid energy per unit area per year) and |
eB |
= |
bonus of 29 g CO2eq/MJ biofuel or bioliquid if biomass is obtained from restored degraded land under the conditions laid down in point 8. |
D. DISAGGREGATED DEFAULT VALUES FOR BIOFUELS AND BIOLIQUIDS
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
sugar beet ethanol |
9,6 |
9,6 |
corn (maize) ethanol |
25,5 |
25,5 |
other cereals excluding corn (maize) ethanol |
27,0 |
27,0 |
sugar cane ethanol |
17,1 |
17,1 |
the part from renewable sources of ETBE |
Equal to that of the ethanol production pathway used |
|
the part from renewable sources of TAEE |
Equal to that of the ethanol production pathway used |
|
rape seed biodiesel |
32,0 |
32,0 |
sunflower biodiesel |
26,1 |
26,1 |
soybean biodiesel |
21,2 |
21,2 |
palm oil biodiesel |
26,2 |
26,2 |
waste cooking oil biodiesel |
0 |
0 |
animal fats from rendering biodiesel (**) |
0 |
0 |
hydrotreated vegetable oil from rape seed |
33,4 |
33,4 |
hydrotreated vegetable oil from sunflower |
26,9 |
26,9 |
hydrotreated vegetable oil from soybean |
22,1 |
22,1 |
hydrotreated vegetable oil from palm oil |
27,4 |
27,4 |
hydrotreated oil from waste cooking oil |
0 |
0 |
hydrotreated oil from animal fats from rendering (**) |
0 |
0 |
pure vegetable oil from rape seed |
33,4 |
33,4 |
pure vegetable oil from sunflower |
27,2 |
27,2 |
pure vegetable oil from soybean |
22,2 |
22,2 |
pure vegetable oil from palm oil |
27,1 |
27,1 |
pure oil from waste cooking oil |
0 |
0 |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
sugar beet ethanol |
4,9 |
4,9 |
corn (maize) ethanol |
13,7 |
13,7 |
other cereals excluding corn (maize) ethanol |
14,1 |
14,1 |
sugar cane ethanol |
2,1 |
2,1 |
the part from renewable sources of ETBE |
Equal to that of the ethanol production pathway used |
|
the part from renewable sources of TAEE |
Equal to that of the ethanol production pathway used |
|
rape seed biodiesel |
17,6 |
17,6 |
sunflower biodiesel |
12,2 |
12,2 |
soybean biodiesel |
13,4 |
13,4 |
palm oil biodiesel |
16,5 |
16,5 |
waste cooking oil biodiesel |
0 |
0 |
animal fats from rendering biodiesel (**) |
0 |
0 |
hydrotreated vegetable oil from rape seed |
18,0 |
18,0 |
hydrotreated vegetable oil from sunflower |
12,5 |
12,5 |
hydrotreated vegetable oil from soybean |
13,7 |
13,7 |
hydrotreated vegetable oil from palm oil |
16,9 |
16,9 |
hydrotreated oil from waste cooking oil |
0 |
0 |
hydrotreated oil from animal fats from rendering (**) |
0 |
0 |
pure vegetable oil from rape seed |
17,6 |
17,6 |
pure vegetable oil from sunflower |
12,2 |
12,2 |
pure vegetable oil from soybean |
13,4 |
13,4 |
pure vegetable oil from palm oil |
16,5 |
16,5 |
pure oil from waste cooking oil |
0 |
0 |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
sugar beet ethanol (no biogas from slop, natural gas as process fuel in conventional boiler) |
18,8 |
26,3 |
sugar beet ethanol (with biogas from slop, natural gas as process fuel in conventional boiler) |
9,7 |
13,6 |
sugar beet ethanol (no biogas from slop, natural gas as process fuel in CHP plant (*1)) |
13,2 |
18,5 |
sugar beet ethanol (with biogas from slop, natural gas as process fuel in CHP plant (*1)) |
7,6 |
10,6 |
sugar beet ethanol (no biogas from slop, lignite as process fuel in CHP plant (*1)) |
27,4 |
38,3 |
sugar beet ethanol (with biogas from slop, lignite as process fuel in CHP plant (*1)) |
15,7 |
22,0 |
corn (maize) ethanol (natural gas as process fuel in conventional boiler) |
20,8 |
29,1 |
corn (maize) ethanol, (natural gas as process fuel in CHP plant (*1)) |
14,8 |
20,8 |
corn (maize) ethanol (lignite as process fuel in CHP plant (*1)) |
28,6 |
40,1 |
corn (maize) ethanol (forest residues as process fuel in CHP plant (*1)) |
1,8 |
2,6 |
other cereals excluding maize ethanol (natural gas as process fuel in conventional boiler) |
21,0 |
29,3 |
other cereals excluding maize ethanol (natural gas as process fuel in CHP plant (*1)) |
15,1 |
21,1 |
other cereals excluding maize ethanol (lignite as process fuel in CHP plant (*1)) |
30,3 |
42,5 |
other cereals excluding maize ethanol (forest residues as process fuel in CHP plant (*1)) |
1,5 |
2,2 |
sugar cane ethanol |
1,3 |
1,8 |
the part from renewable sources of ETBE |
Equal to that of the ethanol production pathway used |
|
the part from renewable sources of TAEE |
Equal to that of the ethanol production pathway used |
|
rape seed biodiesel |
11,7 |
16,3 |
sunflower biodiesel |
11,8 |
16,5 |
soybean biodiesel |
12,1 |
16,9 |
palm oil biodiesel (open effluent pond) |
30,4 |
42,6 |
palm oil biodiesel (process with methane capture at oil mill) |
13,2 |
18,5 |
waste cooking oil biodiesel |
9,3 |
13,0 |
animal fats from rendering biodiesel (*2) |
13,6 |
19,1 |
hydrotreated vegetable oil from rape seed |
10,7 |
15,0 |
hydrotreated vegetable oil from sunflower |
10,5 |
14,7 |
hydrotreated vegetable oil from soybean |
10,9 |
15,2 |
hydrotreated vegetable oil from palm oil (open effluent pond) |
27,8 |
38,9 |
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill) |
9,7 |
13,6 |
hydrotreated oil from waste cooking oil |
10,2 |
14,3 |
hydrotreated oil from animal fats from rendering (*2) |
14,5 |
20,3 |
pure vegetable oil from rape seed |
3,7 |
5.2 |
pure vegetable oil from sunflower |
3,8 |
5,4 |
pure vegetable oil from soybean |
4,2 |
5,9 |
pure vegetable oil from palm oil (open effluent pond) |
22,6 |
31,7 |
pure vegetable oil from palm oil (process with methane capture at oil mill) |
4,7 |
6,5 |
pure oil from waste cooking oil |
0,6 |
0,8 |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
rape seed biodiesel |
3,0 |
4,2 |
sunflower biodiesel |
2,9 |
4,0 |
soybean biodiesel |
3,2 |
4,4 |
palm oil biodiesel (open effluent pond) |
20,9 |
29,2 |
palm oil biodiesel (process with methane capture at oil mill) |
3,7 |
5,1 |
waste cooking oil biodiesel |
0 |
0 |
animal fats from rendering biodiesel (**) |
4,3 |
6,1 |
hydrotreated vegetable oil from rape seed |
3,1 |
4,4 |
hydrotreated vegetable oil from sunflower |
3,0 |
4,1 |
hydrotreated vegetable oil from soybean |
3,3 |
4,6 |
hydrotreated vegetable oil from palm oil (open effluent pond) |
21,9 |
30,7 |
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill) |
3,8 |
5,4 |
hydrotreated oil from waste cooking oil |
0 |
0 |
hydrotreated oil from animal fats from rendering (**) |
4,3 |
6,0 |
pure vegetable oil from rape seed |
3,1 |
4,4 |
pure vegetable oil from sunflower |
3,0 |
4,2 |
pure vegetable oil from soybean |
3,4 |
4,7 |
pure vegetable oil from palm oil (open effluent pond) |
21,8 |
30,5 |
pure vegetable oil from palm oil (process with methane capture at oil mill) |
3,8 |
5,3 |
pure oil from waste cooking oil |
0 |
0 |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
sugar beet ethanol (no biogas from slop, natural gas as process fuel in conventional boiler) |
2,3 |
2,3 |
sugar beet ethanol (with biogas from slop, natural gas as process fuel in conventional boiler) |
2,3 |
2,3 |
sugar beet ethanol (no biogas from slop, natural gas as process fuel in CHP plant (*3)) |
2,3 |
2,3 |
sugar beet ethanol (with biogas from slop, natural gas as process fuel in CHP plant (*3)) |
2,3 |
2,3 |
sugar beet ethanol (no biogas from slop, lignite as process fuel in CHP plant (*3)) |
2,3 |
2,3 |
sugar beet ethanol (with biogas from slop, lignite as process fuel in CHP plant (*3)) |
2,3 |
2,3 |
corn (maize) ethanol (natural gas as process fuel in CHP plant (*3)) |
2,2 |
2,2 |
corn (maize) ethanol (natural gas as process fuel in conventional boiler) |
2,2 |
2,2 |
corn (maize) ethanol (lignite as process fuel in CHP plant (*3)) |
2,2 |
2,2 |
corn (maize) ethanol (forest residues as process fuel in CHP plant (*3)) |
2,2 |
2,2 |
other cereals excluding maize ethanol (natural gas as process fuel in conventional boiler) |
2,2 |
2,2 |
other cereals excluding maize ethanol (natural gas as process fuel in CHP plant (*3)) |
2,2 |
2,2 |
other cereals excluding maize ethanol (lignite as process fuel in CHP plant (*3)) |
2,2 |
2,2 |
other cereals excluding maize ethanol (forest residues as process fuel in CHP plant (*3)) |
2,2 |
2,2 |
sugar cane ethanol |
9,7 |
9,7 |
the part from renewable sources of ETBE |
Equal to that of the ethanol production pathway used |
|
the part from renewable sources of TAEE |
Equal to that of the ethanol production pathway used |
|
rape seed biodiesel |
1,8 |
1,8 |
sunflower biodiesel |
2,1 |
2,1 |
soybean biodiesel |
8,9 |
8,9 |
palm oil biodiesel (open effluent pond) |
6,9 |
6,9 |
palm oil biodiesel (process with methane capture at oil mill) |
6,9 |
6,9 |
waste cooking oil biodiesel |
1,9 |
1,9 |
animal fats from rendering biodiesel (*4) |
1,7 |
1,7 |
hydrotreated vegetable oil from rape seed |
1,7 |
1,7 |
hydrotreated vegetable oil from sunflower |
2,0 |
2,0 |
hydrotreated vegetable oil from soybean |
9,2 |
9,2 |
hydrotreated vegetable oil from palm oil (open effluent pond) |
7,0 |
7,0 |
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill) |
7,0 |
7,0 |
hydrotreated oil from waste cooking oil |
1,7 |
1,7 |
hydrotreated oil from animal fats from rendering (*4) |
1,5 |
1,5 |
pure vegetable oil from rape seed |
1,4 |
1,4 |
pure vegetable oil from sunflower |
1,7 |
1,7 |
pure vegetable oil from soybean |
8,8 |
8,8 |
pure vegetable oil from palm oil (open effluent pond) |
6,7 |
6,7 |
pure vegetable oil from palm oil (process with methane capture at oil mill) |
6,7 |
6,7 |
pure oil from waste cooking oil |
1,4 |
1,4 |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
sugar beet ethanol (no biogas from slop, natural gas as process fuel in conventional boiler) |
1,6 |
1,6 |
sugar beet ethanol (with biogas from slop, natural gas as process fuel in conventional boiler) |
1,6 |
1,6 |
sugar beet ethanol (no biogas from slop, natural gas as process fuel in CHP plant (*5)) |
1,6 |
1,6 |
sugar beet ethanol (with biogas from slop, natural gas as process fuel in CHP plant (*5)) |
1,6 |
1,6 |
sugar beet ethanol (no biogas from slop, lignite as process fuel in CHP plant (*5)) |
1,6 |
1,6 |
sugar beet ethanol (with biogas from slop, lignite as process fuel in CHP plant (*5)) |
1,6 |
1,6 |
corn (maize) ethanol (natural gas as process fuel in conventional boiler) |
1,6 |
1,6 |
corn (maize) ethanol (natural gas as process fuel in CHP plant (*5)) |
1,6 |
1,6 |
corn (maize) ethanol (lignite as process fuel in CHP plant (*5)) |
1,6 |
1,6 |
corn (maize) ethanol (forest residues as process fuel in CHP plant (*5)) |
1,6 |
1,6 |
other cereals excluding maize ethanol (natural gas as process fuel in conventional boiler) |
1,6 |
1,6 |
other cereals excluding maize ethanol (natural gas as process fuel in CHP plant (*5)) |
1,6 |
1,6 |
other cereals excluding maize ethanol (lignite as process fuel in CHP plant (*5)) |
1,6 |
1,6 |
other cereals excluding maize ethanol (forest residues as process fuel in CHP plant (*5)) |
1,6 |
1,6 |
sugar cane ethanol |
6,0 |
6,0 |
the part of ethyl-tertio-butyl-ether (ETBE) from renewable ethanol |
Will be considered to be equal to that of the ethanol production pathway used |
|
the part of tertiary-amyl-ethyl-ether (TAEE) from renewable ethanol |
Will be considered to be equal to that of the ethanol production pathway used |
|
rape seed biodiesel |
1,3 |
1,3 |
sunflower biodiesel |
1,3 |
1,3 |
soybean biodiesel |
1,3 |
1,3 |
palm oil biodiesel (open effluent pond) |
1,3 |
1,3 |
palm oil biodiesel (process with methane capture at oil mill) |
1,3 |
1,3 |
waste cooking oil biodiesel |
1,3 |
1,3 |
animal fats from rendering biodiesel (*6) |
1,3 |
1,3 |
hydrotreated vegetable oil from rape seed |
1,2 |
1,2 |
hydrotreated vegetable oil from sunflower |
1,2 |
1,2 |
hydrotreated vegetable oil from soybean |
1,2 |
1,2 |
hydrotreated vegetable oil from palm oil (open effluent pond) |
1,2 |
1,2 |
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill) |
1,2 |
1,2 |
hydrotreated oil from waste cooking oil |
1,2 |
1,2 |
hydrotreated oil from animal fats from rendering (*6) |
1,2 |
1,2 |
pure vegetable oil from rape seed |
0,8 |
0,8 |
pure vegetable oil from sunflower |
0,8 |
0,8 |
pure vegetable oil from soybean |
0,8 |
0,8 |
pure vegetable oil from palm oil (open effluent pond) |
0,8 |
0,8 |
pure vegetable oil from palm oil (process with methane capture at oil mill) |
0,8 |
0,8 |
pure oil from waste cooking oil |
0,8 |
0,8 |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
sugar beet ethanol (no biogas from slop, natural gas as process fuel in conventional boiler) |
30,7 |
38,2 |
sugar beet ethanol (with biogas from slop, natural gas as process fuel in conventional boiler) |
21,6 |
25,5 |
sugar beet ethanol (no biogas from slop, natural gas as process fuel in CHP plant (*7)) |
25,1 |
30,4 |
sugar beet ethanol (with biogas from slop, natural gas as process fuel in CHP plant (*7)) |
19,5 |
22,5 |
sugar beet ethanol (no biogas from slop, lignite as process fuel in CHP plant (*7)) |
39,3 |
50,2 |
sugar beet ethanol (with biogas from slop, lignite as process fuel in CHP plant (*7)) |
27,6 |
33,9 |
corn (maize) ethanol (natural gas as process fuel in conventional boiler) |
48,5 |
56,8 |
corn (maize) ethanol, (natural gas as process fuel in CHP plant (*7)) |
42,5 |
48,5 |
corn (maize) ethanol (lignite as process fuel in CHP plant (*7)) |
56,3 |
67,8 |
corn (maize) ethanol (forest residues as process fuel in CHP plant (*7)) |
29,5 |
30,3 |
other cereals excluding maize ethanol (natural gas as process fuel in conventional boiler) |
50,2 |
58,5 |
other cereals excluding maize ethanol (natural gas as process fuel in CHP plant (*7)) |
44,3 |
50,3 |
other cereals excluding maize ethanol (lignite as process fuel in CHP plant (*7)) |
59,5 |
71,7 |
other cereals excluding maize ethanol (forest residues as process fuel in CHP plant (*7)) |
30,7 |
31.4 |
sugar cane ethanol |
28,1 |
28.6 |
the part from renewable sources of ETBE |
Equal to that of the ethanol production pathway used |
|
the part from renewable sources of TAEE |
Equal to that of the ethanol production pathway used |
|
rape seed biodiesel |
45,5 |
50,1 |
sunflower biodiesel |
40,0 |
44,7 |
soybean biodiesel |
42,2 |
47,0 |
palm oil biodiesel (open effluent pond) |
63,5 |
75,7 |
palm oil biodiesel (process with methane capture at oil mill) |
46,3 |
51,6 |
waste cooking oil biodiesel |
11,2 |
14,9 |
animals fats from rendering biodiesel (*8) |
15,3 |
20,8 |
hydrotreated vegetable oil from rape seed |
45,8 |
50,1 |
hydrotreated vegetable oil from sunflower |
39,4 |
43,6 |
hydrotreated vegetable oil from soybean |
42,2 |
46,5 |
hydrotreated vegetable oil from palm oil (open effluent pond) |
62,2 |
73,3 |
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill) |
44,1 |
48,0 |
hydrotreated oil from waste cooking oil |
11,9 |
16,0 |
hydrotreated oil from animal fats from rendering (*8) |
16,0 |
21,8 |
pure vegetable oil from rape seed |
38,5 |
40,0 |
pure vegetable oil from sunflower |
32,7 |
34,3 |
pure vegetable oil from soybean |
35,2 |
36,9 |
pure vegetable oil from palm oil (open effluent pond) |
56,3 |
65,4 |
pure vegetable oil from palm oil (process with methane capture at oil mill) |
38,4 |
57,2 |
pure oil from waste cooking oil |
2,0 |
2,2 |
E. ESTIMATED DISAGGREGATED DEFAULT VALUES FOR FUTURE BIOFUELS AND BIOLIQUIDS THAT WERE NOT ON THE MARKET OR WERE ONLY ON THE MARKET IN NEGLIGIBLE QUANTITIES IN 2016
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
wheat straw ethanol |
1,8 |
1,8 |
waste wood Fischer-Tropsch diesel in free-standing plant |
3,3 |
3,3 |
farmed wood Fischer-Tropsch diesel in free-standing plant |
8,2 |
8,2 |
waste wood Fischer-Tropsch petrol in free-standing plant |
8,2 |
8,2 |
farmed wood Fischer-Tropsch petrol in free-standing plant |
12,4 |
12,4 |
waste wood dimethylether (DME) in free-standing plant |
3,1 |
3,1 |
farmed wood dimethylether (DME) in free-standing plant |
7,6 |
7,6 |
waste wood methanol in free-standing plant |
3,1 |
3,1 |
farmed wood methanol in free-standing plant |
7,6 |
7,6 |
Fischer-Tropsch diesel from black-liquor gasification integrated with pulp mill |
2,5 |
2,5 |
Fischer-Tropsch petrol from black-liquor gasification integrated with pulp mill |
2,5 |
2,5 |
dimethylether (DME) from black-liquor gasification integrated with pulp mill |
2,5 |
2,5 |
Methanol from black-liquor gasification integrated with pulp mill |
2,5 |
2,5 |
the part from renewable sources of MTBE |
Equal to that of the methanol production pathway used |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
wheat straw ethanol |
0 |
0 |
waste wood Fischer-Tropsch diesel in free-standing plant |
0 |
0 |
farmed wood Fischer-Tropsch diesel in free-standing plant |
4,4 |
4,4 |
waste wood Fischer-Tropsch petrol in free-standing plant |
0 |
0 |
farmed wood Fischer-Tropsch petrol in free-standing plant |
4,4 |
4,4 |
waste wood dimethylether (DME) in free-standing plant |
0 |
0 |
farmed wood dimethylether (DME) in free-standing plant |
4,1 |
4,1 |
waste wood methanol in free-standing plant |
0 |
0 |
farmed wood methanol in free-standing plant |
4,1 |
4,1 |
Fischer-Tropsch diesel from black-liquor gasification integrated with pulp mill |
0 |
0 |
Fischer-Tropsch petrol from black-liquor gasification integrated with pulp mill |
0 |
0 |
dimethylether (DME) from black-liquor gasification integrated with pulp mill |
0 |
0 |
Methanol from black-liquor gasification integrated with pulp mill |
0 |
0 |
the part from renewable sources of MTBE |
Equal to that of the methanol production pathway used |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
wheat straw ethanol |
4,8 |
6,8 |
waste wood Fischer-Tropsch diesel in free-standing plant |
0,1 |
0,1 |
farmed wood Fischer-Tropsch diesel in free-standing plant |
0,1 |
0,1 |
waste wood Fischer-Tropsch petrol in free-standing plant |
0,1 |
0,1 |
farmed wood Fischer-Tropsch petrol in free-standing plant |
0,1 |
0,1 |
waste wood dimethylether (DME) in free-standing plant |
0 |
0 |
farmed wood dimethylether (DME) in free-standing plant |
0 |
0 |
waste wood methanol in free-standing plant |
0 |
0 |
farmed wood methanol in free-standing plant |
0 |
0 |
Fischer-Tropsch diesel from black-liquor gasification integrated with pulp mill |
0 |
0 |
Fischer-Tropsch petrol from black-liquor gasification integrated with pulp mill |
0 |
0 |
dimethylether (DME) from black-liquor gasification integrated with pulp mill |
0 |
0 |
methanol from black-liquor gasification integrated with pulp mill |
0 |
0 |
the part from renewable sources of MTBE |
Equal to that of the methanol production pathway used |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
wheat straw ethanol |
7,1 |
7,1 |
waste wood Fischer-Tropsch diesel in free-standing plant |
10,3 |
10,3 |
farmed wood Fischer-Tropsch diesel in free-standing plant |
8,4 |
8,4 |
waste wood Fischer-Tropsch petrol in free-standing plant |
10,3 |
10,3 |
farmed wood Fischer-Tropsch petrol in free-standing plant |
8,4 |
8,4 |
waste wood dimethylether (DME) in free-standing plant |
10,4 |
10,4 |
farmed wood dimethylether (DME) in free-standing plant |
8,6 |
8,6 |
waste wood methanol in free-standing plant |
10,4 |
10,4 |
farmed wood methanol in free-standing plant |
8,6 |
8,6 |
Fischer-Tropsch diesel from black-liquor gasification integrated with pulp mill |
7,7 |
7,7 |
Fischer-Tropsch petrol from black-liquor gasification integrated with pulp mill |
7,9 |
7,9 |
dimethylether (DME) from black-liquor gasification integrated with pulp mill |
7,7 |
7,7 |
methanol from black-liquor gasification integrated with pulp mill |
7,9 |
7,9 |
the part from renewable sources of MTBE |
Equal to that of the methanol production pathway used |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
wheat straw ethanol |
1,6 |
1,6 |
waste wood Fischer-Tropsch diesel in free-standing plant |
1,2 |
1,2 |
farmed wood Fischer-Tropsch diesel in free-standing plant |
1,2 |
1,2 |
waste wood Fischer-Tropsch petrol in free-standing plant |
1,2 |
1,2 |
farmed wood Fischer-Tropsch petrol in free-standing plant |
1,2 |
1,2 |
waste wood dimethylether (DME) in free-standing plant |
2,0 |
2,0 |
farmed wood dimethylether (DME) in free-standing plant |
2,0 |
2,0 |
waste wood methanol in free-standing plant |
2,0 |
2,0 |
farmed wood methanol in free-standing plant |
2,0 |
2,0 |
Fischer-Tropsch diesel from black-liquor gasification integrated with pulp mill |
2,0 |
2,0 |
Fischer-Tropsch petrol from black-liquor gasification integrated with pulp mill |
2,0 |
2,0 |
dimethylether (DME) from black-liquor gasification integrated with pulp mill |
2,0 |
2,0 |
methanol from black-liquor gasification integrated with pulp mill |
2,0 |
2,0 |
the part from renewable sources of MTBE |
Equal to that of the methanol production pathway used |
Biofuel and bioliquid production pathway |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
wheat straw ethanol |
13,7 |
15,7 |
waste wood Fischer-Tropsch diesel in free-standing plant |
13,7 |
13,7 |
farmed wood Fischer-Tropsch diesel in free-standing plant |
16,7 |
16,7 |
waste wood Fischer-Tropsch petrol in free-standing plant |
13,7 |
13,7 |
farmed wood Fischer-Tropsch petrol in free-standing plant |
16,7 |
16,7 |
waste wood dimethylether (DME) in free-standing plant |
13,5 |
13,5 |
farmed wood dimethylether (DME) in free-standing plant |
16,2 |
16,2 |
waste wood methanol in free-standing plant |
13,5 |
13,5 |
farmed wood methanol in free-standing plant |
16,2 |
16,2 |
Fischer-Tropsch diesel from black-liquor gasification integrated with pulp mill |
10,2 |
10,2 |
Fischer-Tropsch petrol from black-liquor gasification integrated with pulp mill |
10,4 |
10,4 |
dimethylether (DME) from black-liquor gasification integrated with pulp mill |
10,2 |
10,2 |
methanol from black-liquor gasification integrated with pulp mill |
10,4 |
10,4 |
the part from renewable sources of MTBE |
Equal to that of the methanol production pathway used |
ANNEX VI
RULES FOR CALCULATING THE GREENHOUSE GAS IMPACT OF BIOMASS FUELS AND THEIR FOSSIL FUEL COMPARATORS
A. Typical and default values of greenhouse gas emissions savings for biomass fuels if produced with no net-carbon emissions from land-use change
WOODCHIPS |
|||||
Biomass fuel production system |
Transport distance |
Greenhouse gas emissions savings –typical value |
Greenhouse gas emissions savings – default value |
||
Heat |
Electricity |
Heat |
Electricity |
||
Woodchips from forest residues |
1 to 500 km |
93 % |
89 % |
91 % |
87 % |
500 to 2 500 km |
89 % |
84 % |
87 % |
81 % |
|
2 500 to 10 000 km |
82 % |
73 % |
78 % |
67 % |
|
Above 10 000 km |
67 % |
51 % |
60 % |
41 % |
|
Woodchips from short rotation coppice (Eucalyptus) |
2 500 to 10 000 km |
77 % |
65 % |
73 % |
60 % |
Woodchips from short rotation coppice (Poplar – Fertilised) |
1 to 500 km |
89 % |
83 % |
87 % |
81 % |
500 to 2 500 km |
85 % |
78 % |
84 % |
76 % |
|
2 500 to 10 000 km |
78 % |
67 % |
74 % |
62 % |
|
Above 10 000 km |
63 % |
45 % |
57 % |
35 % |
|
Woodchips from short rotation coppice (Poplar – No fertilisation) |
1 to 500 km |
91 % |
87 % |
90 % |
85 % |
500 to 2 500 km |
88 % |
82 % |
86 % |
79 % |
|
2 500 to 10 000 km |
80 % |
70 % |
77 % |
65 % |
|
Above 10 000 km |
65 % |
48 % |
59 % |
39 % |
|
Woodchips from stemwood |
1 to 500 km |
93 % |
89 % |
92 % |
88 % |
500 to 2 500 km |
90 % |
85 % |
88 % |
82 % |
|
2 500 to 10 000 km |
82 % |
73 % |
79 % |
68 % |
|
Above 10 000 km |
67 % |
51 % |
61 % |
42 % |
|
Woodchips from industry residues |
1 to 500 km |
94 % |
92 % |
93 % |
90 % |
500 to 2 500 km |
91 % |
87 % |
90 % |
85 % |
|
2 500 to 10 000 km |
83 % |
75 % |
80 % |
71 % |
|
Above 10 000 km |
69 % |
54 % |
63 % |
44 % |
WOOD PELLETS (*1) |
||||||
Biomass fuel production system |
Transport distance |
Greenhouse gas emissions savings – typical value |
Greenhouse gas emissions savings – default value |
|||
Heat |
Electricity |
Heat |
Electricity |
|||
Wood briquettes or pellets from forest residues |
Case 1 |
1 to 500 km |
58 % |
37 % |
49 % |
24 % |
500 to 2 500 km |
58 % |
37 % |
49 % |
25 % |
||
2 500 to 10 000 km |
55 % |
34 % |
47 % |
21 % |
||
Above 10 000 km |
50 % |
26 % |
40 % |
11 % |
||
Case 2a |
1 to 500 km |
77 % |
66 % |
72 % |
59 % |
|
500 to 2 500 km |
77 % |
66 % |
72 % |
59 % |
||
2 500 to 10 000 km |
75 % |
62 % |
70 % |
55 % |
||
Above 10 000 km |
69 % |
54 % |
63 % |
45 % |
||
Case 3a |
1 to 500 km |
92 % |
88 % |
90 % |
85 % |
|
500 to 2 500 km |
92 % |
88 % |
90 % |
86 % |
||
2 500 to 10 000 km |
90 % |
85 % |
88 % |
81 % |
||
Above 10 000 km |
84 % |
76 % |
81 % |
72 % |
||
Wood briquettes or pellets from short rotation coppice (Eucalyptus) |
Case 1 |
2 500 to 10 000 km |
52 % |
28 % |
43 % |
15 % |
Case 2a |
2 500 to 10 000 km |
70 % |
56 % |
66 % |
49 % |
|
Case 3a |
2 500 to 10 000 km |
85 % |
78 % |
83 % |
75 % |
|
Wood briquettes or pellets from short rotation coppice (Poplar – Fertilised) |
Case 1 |
1 to 500 km |
54 % |
32 % |
46 % |
20 % |
500 to 10 000 km |
52 % |
29 % |
44 % |
16 % |
||
Above 10 000 km |
47 % |
21 % |
37 % |
7 % |
||
Case 2a |
1 to 500 km |
73 % |
60 % |
69 % |
54 % |
|
500 to 10 000 km |
71 % |
57 % |
67 % |
50 % |
||
Above 10 000 km |
66 % |
49 % |
60 % |
41 % |
||
Case 3a |
1 to 500 km |
88 % |
82 % |
87 % |
81 % |
|
500 to 10 000 km |
86 % |
79 % |
84 % |
77 % |
||
Above 10 000 km |
80 % |
71 % |
78 % |
67 % |
||
Wood briquettes or pellets from short rotation coppice (Poplar – No fertilisation) |
Case 1 |
1 to 500 km |
56 % |
35 % |
48 % |
23 % |
500 to 10 000 km |
54 % |
32 % |
46 % |
20 % |
||
Above 10 000 km |
49 % |
24 % |
40 % |
10 % |
||
Case 2a |
1 to 500 km |
76 % |
64 % |
72 % |
58 % |
|
500 to 10 000 km |
74 % |
61 % |
69 % |
54 % |
||
Above 10 000 km |
68 % |
53 % |
63 % |
45 % |
||
Case 3a |
1 to 500 km |
91 % |
86 % |
90 % |
85 % |
|
500 to 10 000 km |
89 % |
83 % |
87 % |
81 % |
||
Above 10 000 km |
83 % |
75 % |
81 % |
71 % |
||
Stemwood |
Case 1 |
1 to 500 km |
57 % |
37 % |
49 % |
24 % |
500 to 2 500 km |
58 % |
37 % |
49 % |
25 % |
||
2 500 to 10 000 km |
55 % |
34 % |
47 % |
21 % |
||
Above 10 000 km |
50 % |
26 % |
40 % |
11 % |
||
Case 2a |
1 to 500 km |
77 % |
66 % |
73 % |
60 % |
|
500 to 2 500 km |
77 % |
66 % |
73 % |
60 % |
||
2 500 to 10 000 km |
75 % |
63 % |
70 % |
56 % |
||
Above 10 000 km |
70 % |
55 % |
64 % |
46 % |
||
Case 3a |
1 to 500 km |
92 % |
88 % |
91 % |
86 % |
|
500 to 2 500 km |
92 % |
88 % |
91 % |
87 % |
||
2 500 to 10 000 km |
90 % |
85 % |
88 % |
83 % |
||
Above 10 000 km |
84 % |
77 % |
82 % |
73 % |
||
Wood briquettes or pellets from wood industry residues |
Case 1 |
1 to 500 km |
75 % |
62 % |
69 % |
55 % |
500 to 2 500 km |
75 % |
62 % |
70 % |
55 % |
||
2 500 to 10 000 km |
72 % |
59 % |
67 % |
51 % |
||
Above 10 000 km |
67 % |
51 % |
61 % |
42 % |
||
Case 2a |
1 to 500 km |
87 % |
80 % |
84 % |
76 % |
|
500 to 2 500 km |
87 % |
80 % |
84 % |
77 % |
||
2 500 to 10 000 km |
85 % |
77 % |
82 % |
73 % |
||
Above 10 000 km |
79 % |
69 % |
75 % |
63 % |
||
Case 3a |
1 to 500 km |
95 % |
93 % |
94 % |
91 % |
|
500 to 2 500 km |
95 % |
93 % |
94 % |
92 % |
||
2 500 to 10 000 km |
93 % |
90 % |
92 % |
88 % |
||
Above 10 000 km |
88 % |
82 % |
85 % |
78 % |
AGRICULTURE PATHWAYS |
|||||
Biomass fuel production system |
Transport distance |
Greenhouse gas emissions savings – typical value |
Greenhouse gas emissions savings – default value |
||
Heat |
Electricity |
Heat |
Electricity |
||
Agricultural Residues with density < 0,2 t/m3 (*2) |
1 to 500 km |
95 % |
92 % |
93 % |
90 % |
500 to 2 500 km |
89 % |
83 % |
86 % |
80 % |
|
2 500 to 10 000 km |
77 % |
66 % |
73 % |
60 % |
|
Above 10 000 km |
57 % |
36 % |
48 % |
23 % |
|
Agricultural Residues with density > 0,2 t/m3 (*3) |
1 to 500 km |
95 % |
92 % |
93 % |
90 % |
500 to 2 500 km |
93 % |
89 % |
92 % |
87 % |
|
2 500 to 10 000 km |
88 % |
82 % |
85 % |
78 % |
|
Above 10 000 km |
78 % |
68 % |
74 % |
61 % |
|
Straw pellets |
1 to 500 km |
88 % |
82 % |
85 % |
78 % |
500 to 10 000 km |
86 % |
79 % |
83 % |
74 % |
|
Above 10 000 km |
80 % |
70 % |
76 % |
64 % |
|
Bagasse briquettes |
500 to 10 000 km |
93 % |
89 % |
91 % |
87 % |
Above 10 000 km |
87 % |
81 % |
85 % |
77 % |
|
Palm Kernel Meal |
Above 10 000 km |
20 % |
-18 % |
11 % |
-33 % |
Palm Kernel Meal (no CH4 emissions from oil mill) |
Above 10 000 km |
46 % |
20 % |
42 % |
14 % |
BIOGAS FOR ELECTRICITY (*4) |
||||
Biogas production system |
Technological option |
Greenhouse gas emissions savings – typical value |
Greenhouse gas emissions savings – default value |
|
Wet manure(1) |
Case 1 |
Open digestate(2) |
146 % |
94 % |
Close digestate(3) |
246 % |
240 % |
||
Case 2 |
Open digestate |
136 % |
85 % |
|
Close digestate |
227 % |
219 % |
||
Case 3 |
Open digestate |
142 % |
86 % |
|
Close digestate |
243 % |
235 % |
||
Maize whole plant(4) |
Case 1 |
Open digestate |
36 % |
21 % |
Close digestate |
59 % |
53 % |
||
Case 2 |
Open digestate |
34 % |
18 % |
|
Close digestate |
55 % |
47 % |
||
Case 3 |
Open digestate |
28 % |
10 % |
|
Close digestate |
52 % |
43 % |
||
Biowaste |
Case 1 |
Open digestate |
47 % |
26 % |
Close digestate |
84 % |
78 % |
||
Case 2 |
Open digestate |
43 % |
21 % |
|
Close digestate |
77 % |
68 % |
||
Case 3 |
Open digestate |
38 % |
14 % |
|
Close digestate |
76 % |
66 % |
BIOGAS FOR ELECTRICITY – MIXTURES OF MANURE AND MAIZE |
||||
Biogas production system |
Technological option |
Greenhouse gas emissions savings – typical value |
Greenhouse gas emissions savings – default value |
|
Manure – Maize 80 % - 20 % |
Case 1 |
Open digestate |
72 % |
45 % |
Close digestate |
120 % |
114 % |
||
Case 2 |
Open digestate |
67 % |
40 % |
|
Close digestate |
111 % |
103 % |
||
Case 3 |
Open digestate |
65 % |
35 % |
|
Close digestate |
114 % |
106 % |
||
Manure – Maize 70 % - 30 % |
Case 1 |
Open digestate |
60 % |
37 % |
Close digestate |
100 % |
94 % |
||
Case 2 |
Open digestate |
57 % |
32 % |
|
Close digestate |
93 % |
85 % |
||
Case 3 |
Open digestate |
53 % |
27 % |
|
Close digestate |
94 % |
85 % |
||
Manure – Maize 60 % - 40 % |
Case 1 |
Open digestate |
53 % |
32 % |
Close digestate |
88 % |
82 % |
||
Case 2 |
Open digestate |
50 % |
28 % |
|
Close digestate |
82 % |
73 % |
||
Case 3 |
Open digestate |
46 % |
22 % |
|
Close digestate |
81 % |
72 % |
BIOMETHANE FOR TRANSPORT (*5) |
|||
Biomethane production system |
Technological options |
Greenhouse gas emissions savings – typical value |
Greenhouse gas emissions savings – default value |
Wet manure |
Open digestate, no off-gas combustion |
117 % |
72 % |
Open digestate, off-gas combustion |
133 % |
94 % |
|
Close digestate, no off-gas combustion |
190 % |
179 % |
|
Close digestate, off-gas combustion |
206 % |
202 % |
|
Maize whole plant |
Open digestate, no off-gas combustion |
35 % |
17 % |
Open digestate, off-gas combustion |
51 % |
39 % |
|
Close digestate, no off-gas combustion |
52 % |
41 % |
|
Close digestate, off-gas combustion |
68 % |
63 % |
|
Biowaste |
Open digestate, no off-gas combustion |
43 % |
20 % |
Open digestate, off-gas combustion |
59 % |
42 % |
|
Close digestate, no off-gas combustion |
70 % |
58 % |
|
Close digestate, off-gas combustion |
86 % |
80 % |
BIOMETHANE – MIXTURES OF MANURE AND MAIZE (*6) |
|||
Biomethane production system |
Technological options |
Greenhouse gas emissions savings – typical value |
Greenhouse gas emissions savings – default value |
Manure – Maize 80 % - 20 % |
Open digestate, no off-gas combustion(5) |
62 % |
35 % |
Open digestate, off-gas combustion(6) |
78 % |
57 % |
|
Close digestate, no off-gas combustion |
97 % |
86 % |
|
Close digestate, off-gas combustion |
113 % |
108 % |
|
Manure – Maize 70 % - 30 % |
Open digestate, no off-gas combustion |
53 % |
29 % |
Open digestate, off-gas combustion |
69 % |
51 % |
|
Close digestate, no off-gas combustion |
83 % |
71 % |
|
Close digestate, off-gas combustion |
99 % |
94 % |
|
Manure – Maize 60 % - 40 % |
Open digestate, no off-gas combustion |
48 % |
25 % |
Open digestate, off-gas combustion |
64 % |
48 % |
|
Close digestate, no off-gas combustion |
74 % |
62 % |
|
Close digestate, off-gas combustion |
90 % |
84 % |
B. METHODOLOGY
C. DISAGGREGATED DEFAULT VALUES FOR BIOMASS FUELS
Wood briquettes or pellets
Biomass fuel production system |
Transport distance |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
||||||
Cultivation |
Processing |
Transport |
Non-CO2 emissions from the fuel in use |
Cultivation |
Processing |
Transport |
Non-CO2 emissions from the fuel in use |
||
Wood chips from forest residues |
1 to 500 km |
0,0 |
1,6 |
3,0 |
0,4 |
0,0 |
1,9 |
3,6 |
0,5 |
500 to 2 500 km |
0,0 |
1,6 |
5,2 |
0,4 |
0,0 |
1,9 |
6,2 |
0,5 |
|
2 500 to 10 000 km |
0,0 |
1,6 |
10,5 |
0,4 |
0,0 |
1,9 |
12,6 |
0,5 |
|
Above 10 000 km |
0,0 |
1,6 |
20,5 |
0,4 |
0,0 |
1,9 |
24,6 |
0,5 |
|
Wood chips from SRC (Eucalyptus) |
2 500 to 10 000 km |
4,4 |
0,0 |
11,0 |
0,4 |
4,4 |
0,0 |
13,2 |
0,5 |
Wood chips from SRC (Poplar – fertilised) |
1 to 500 km |
3,9 |
0,0 |
3,5 |
0,4 |
3,9 |
0,0 |
4,2 |
0,5 |
500 to 2 500 km |
3,9 |
0,0 |
5,6 |
0,4 |
3,9 |
0,0 |
6,8 |
0,5 |
|
2 500 to 10 000 km |
3,9 |
0,0 |
11,0 |
0,4 |
3,9 |
0,0 |
13,2 |
0,5 |
|
Above 10 000 km |
3,9 |
0,0 |
21,0 |
0,4 |
3,9 |
0,0 |
25,2 |
0,5 |
|
Wood chips from SRC (Poplar – Not fertilised) |
1 to 500 km |
2,2 |
0,0 |
3,5 |
0,4 |
2,2 |
0,0 |
4,2 |
0,5 |
500 to 2 500 km |
2,2 |
0,0 |
5,6 |
0,4 |
2,2 |
0,0 |
6,8 |
0,5 |
|
2 500 to 10 000 km |
2,2 |
0,0 |
11,0 |
0,4 |
2,2 |
0,0 |
13,2 |
0,5 |
|
Above 10 000 km |
2,2 |
0,0 |
21,0 |
0,4 |
2,2 |
0,0 |
25,2 |
0,5 |
|
Wood chips from stemwood |
1 to 500 km |
1,1 |
0,3 |
3,0 |
0,4 |
1,1 |
0,4 |
3,6 |
0,5 |
500 to 2 500 km |
1,1 |
0,3 |
5,2 |
0,4 |
1,1 |
0,4 |
6,2 |
0,5 |
|
2 500 to 10 000 km |
1,1 |
0,3 |
10,5 |
0,4 |
1,1 |
0,4 |
12,6 |
0,5 |
|
Above 10 000 km |
1,1 |
0,3 |
20,5 |
0,4 |
1,1 |
0,4 |
24,6 |
0,5 |
|
Wood chips from wood industry residues |
1 to 500 km |
0,0 |
0,3 |
3,0 |
0,4 |
0,0 |
0,4 |
3,6 |
0,5 |
500 to 2 500 km |
0,0 |
0,3 |
5,2 |
0,4 |
0,0 |
0,4 |
6,2 |
0,5 |
|
2 500 to 10 000 km |
0,0 |
0,3 |
10,5 |
0,4 |
0,0 |
0,4 |
12,6 |
0,5 |
|
Above 10 000 km |
0,0 |
0,3 |
20,5 |
0,4 |
0,0 |
0,4 |
24,6 |
0,5 |
Wood briquettes or pellets
Biomass fuel production system |
Transport distance |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
||||||
|
|
Cultivation |
Processing |
Transport & distribution |
Non-CO2 emissions from the fuel in use |
Cultivation |
Processing |
Transport & distribution |
Non-CO2 emissions from the fuel in use |
Wood briquettes or pellets from forest residues (case 1) |
1 to 500 km |
0,0 |
25,8 |
2,9 |
0,3 |
0,0 |
30,9 |
3,5 |
0,3 |
500 to 2 500 km |
0,0 |
25,8 |
2,8 |
0,3 |
0,0 |
30,9 |
3,3 |
0,3 |
|
2 500 to 10 000 km |
0,0 |
25,8 |
4,3 |
0,3 |
0,0 |
30,9 |
5,2 |
0,3 |
|
Above 10 000 km |
0,0 |
25,8 |
7,9 |
0,3 |
0,0 |
30,9 |
9,5 |
0,3 |
|
Wood briquettes or pellets from forest residues (case 2a) |
1 to 500 km |
0,0 |
12,5 |
3,0 |
0,3 |
0,0 |
15,0 |
3,6 |
0,3 |
500 to 2 500 km |
0,0 |
12,5 |
2,9 |
0,3 |
0,0 |
15,0 |
3,5 |
0,3 |
|
2 500 to 10 000 km |
0,0 |
12,5 |
4,4 |
0,3 |
0,0 |
15,0 |
5,3 |
0,3 |
|
Above 10 000 km |
0,0 |
12,5 |
8,1 |
0,3 |
0,0 |
15,0 |
9,8 |
0,3 |
|
Wood briquettes or pellets from forest residues (case 3a) |
1 to 500 km |
0,0 |
2,4 |
3,0 |
0,3 |
0,0 |
2,8 |
3,6 |
0,3 |
500 to 2 500 km |
0,0 |
2,4 |
2,9 |
0,3 |
0,0 |
2,8 |
3,5 |
0,3 |
|
2 500 to 10 000 km |
0,0 |
2,4 |
4,4 |
0,3 |
0,0 |
2,8 |
5,3 |
0,3 |
|
Above 10 000 km |
0,0 |
2,4 |
8,2 |
0,3 |
0,0 |
2,8 |
9,8 |
0,3 |
|
Wood briquettes from short rotation coppice (Eucalyptus – case 1) |
2 500 to 10 000 km |
3,9 |
24,5 |
4,3 |
0,3 |
3,9 |
29,4 |
5,2 |
0,3 |
Wood briquettes from short rotation coppice (Eucalyptus – case 2a) |
2 500 to 10 000 km |
5,0 |
10,6 |
4,4 |
0,3 |
5,0 |
12,7 |
5,3 |
0,3 |
Wood briquettes from short rotation coppice (Eucalyptus – case 3a) |
2 500 to 10 000 km |
5,3 |
0,3 |
4,4 |
0,3 |
5,3 |
0,4 |
5,3 |
0,3 |
Wood briquettes from short rotation coppice (Poplar – Fertilised – case 1) |
1 to 500 km |
3,4 |
24,5 |
2,9 |
0,3 |
3,4 |
29,4 |
3,5 |
0,3 |
500 to 10 000 km |
3,4 |
24,5 |
4,3 |
0,3 |
3,4 |
29,4 |
5,2 |
0,3 |
|
Above 10 000 km |
3,4 |
24,5 |
7,9 |
0,3 |
3,4 |
29,4 |
9,5 |
0,3 |
|
Wood briquettes from short rotation coppice (Poplar – Fertilised – case 2a) |
1 to 500 km |
4,4 |
10,6 |
3,0 |
0,3 |
4,4 |
12,7 |
3,6 |
0,3 |
500 to 10 000 km |
4,4 |
10,6 |
4,4 |
0,3 |
4,4 |
12,7 |
5,3 |
0,3 |
|
Above 10 000 km |
4,4 |
10,6 |
8,1 |
0,3 |
4,4 |
12,7 |
9,8 |
0,3 |
|
Wood briquettes from short rotation coppice (Poplar – Fertilised – case 3a) |
1 to 500 km |
4,6 |
0,3 |
3,0 |
0,3 |
4,6 |
0,4 |
3,6 |
0,3 |
500 to 10 000 km |
4,6 |
0,3 |
4,4 |
0,3 |
4,6 |
0,4 |
5,3 |
0,3 |
|
Above 10 000 km |
4,6 |
0,3 |
8,2 |
0,3 |
4,6 |
0,4 |
9,8 |
0,3 |
|
Wood briquettes from short rotation coppice (Poplar – no fertilisation – case 1) |
1 to 500 km |
2,0 |
24,5 |
2,9 |
0,3 |
2,0 |
29,4 |
3,5 |
0,3 |
500 to 2 500 km |
2,0 |
24,5 |
4,3 |
0,3 |
2,0 |
29,4 |
5,2 |
0,3 |
|
2 500 to 10 000 km |
2,0 |
24,5 |
7,9 |
0,3 |
2,0 |
29,4 |
9,5 |
0,3 |
|
Wood briquettes from short rotation coppice (Poplar – no fertilisation – case 2a) |
1 to 500 km |
2,5 |
10,6 |
3,0 |
0,3 |
2,5 |
12,7 |
3,6 |
0,3 |
500 to 10 000 km |
2,5 |
10,6 |
4,4 |
0,3 |
2,5 |
12,7 |
5,3 |
0,3 |
|
Above 10 000 km |
2,5 |
10,6 |
8,1 |
0,3 |
2,5 |
12,7 |
9,8 |
0,3 |
|
Wood briquettes from short rotation coppice (Poplar – no fertilisation– case 3a) |
1 to 500 km |
2,6 |
0,3 |
3,0 |
0,3 |
2,6 |
0,4 |
3,6 |
0,3 |
500 to 10 000 km |
2,6 |
0,3 |
4,4 |
0,3 |
2,6 |
0,4 |
5,3 |
0,3 |
|
Above 10 000 km |
2,6 |
0,3 |
8,2 |
0,3 |
2,6 |
0,4 |
9,8 |
0,3 |
|
Wood briquettes or pellets from stemwood (case 1) |
1 to 500 km |
1,1 |
24,8 |
2,9 |
0,3 |
1,1 |
29,8 |
3,5 |
0,3 |
500 to 2 500 km |
1,1 |
24,8 |
2,8 |
0,3 |
1,1 |
29,8 |
3,3 |
0,3 |
|
2 500 to 10 000 km |
1,1 |
24,8 |
4,3 |
0,3 |
1,1 |
29,8 |
5,2 |
0,3 |
|
Above 10 000 km |
1,1 |
24,8 |
7,9 |
0,3 |
1,1 |
29,8 |
9,5 |
0,3 |
|
Wood briquettes or pellets from stemwood (case 2a) |
1 to 500 km |
1,4 |
11,0 |
3,0 |
0,3 |
1,4 |
13,2 |
3,6 |
0,3 |
500 to 2 500 km |
1,4 |
11,0 |
2,9 |
0,3 |
1,4 |
13,2 |
3,5 |
0,3 |
|
2 500 to 10 000 km |
1,4 |
11,0 |
4,4 |
0,3 |
1,4 |
13,2 |
5,3 |
0,3 |
|
Above 10 000 km |
1,4 |
11,0 |
8,1 |
0,3 |
1,4 |
13,2 |
9,8 |
0,3 |
|
Wood briquettes or pellets from stemwood (case 3a) |
1 to 500 km |
1,4 |
0,8 |
3,0 |
0,3 |
1,4 |
0,9 |
3,6 |
0,3 |
500 to 2 500 km |
1,4 |
0,8 |
2,9 |
0,3 |
1,4 |
0,9 |
3,5 |
0,3 |
|
2 500 to 10 000 km |
1,4 |
0,8 |
4,4 |
0,3 |
1,4 |
0,9 |
5,3 |
0,3 |
|
Above 10 000 km |
1,4 |
0,8 |
8,2 |
0,3 |
1,4 |
0,9 |
9,8 |
0,3 |
|
Wood briquettes or pellets from wood industry residues (case 1) |
1 to 500 km |
0,0 |
14,3 |
2,8 |
0,3 |
0,0 |
17,2 |
3,3 |
0,3 |
500 to 2 500 km |
0,0 |
14,3 |
2,7 |
0,3 |
0,0 |
17,2 |
3,2 |
0,3 |
|
2 500 to 10 000 km |
0,0 |
14,3 |
4,2 |
0,3 |
0,0 |
17,2 |
5,0 |
0,3 |
|
Above 10 000 km |
0,0 |
14,3 |
7,7 |
0,3 |
0,0 |
17,2 |
9,2 |
0,3 |
|
Wood briquettes or pellets from wood industry residues (case 2a) |
1 to 500 km |
0,0 |
6,0 |
2,8 |
0,3 |
0,0 |
7,2 |
3,4 |
0,3 |
500 to 2 500 km |
0,0 |
6,0 |
2,7 |
0,3 |
0,0 |
7,2 |
3,3 |
0,3 |
|
2 500 to 10 000 km |
0,0 |
6,0 |
4,2 |
0,3 |
0,0 |
7,2 |
5,1 |
0,3 |
|
Above 10 000 km |
0,0 |
6,0 |
7,8 |
0,3 |
0,0 |
7,2 |
9,3 |
0,3 |
|
Wood briquettes or pellets from wood industry residues (case 3a) |
1 to 500 km |
0,0 |
0,2 |
2,8 |
0,3 |
0,0 |
0,3 |
3,4 |
0,3 |
500 to 2 500 km |
0,0 |
0,2 |
2,7 |
0,3 |
0,0 |
0,3 |
3,3 |
0,3 |
|
2 500 to 10 000 km |
0,0 |
0,2 |
4,2 |
0,3 |
0,0 |
0,3 |
5,1 |
0,3 |
|
Above 10 000 km |
0,0 |
0,2 |
7,8 |
0,3 |
0,0 |
0,3 |
9,3 |
0,3 |
Agriculture pathways
Biomass fuel production system |
Transport distance |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
||||||
|
|
Cultivation |
Processing |
Transport & distribution |
Non-CO2 emissions from the fuel in use |
Cultivation |
Processing |
Transport & distribution |
Non-CO2 emissions from the fuel in use |
Agricultural Residues with density < 0,2 t/m3 |
1 to 500 km |
0,0 |
0,9 |
2,6 |
0,2 |
0,0 |
1,1 |
3,1 |
0,3 |
500 to 2 500 km |
0,0 |
0,9 |
6,5 |
0,2 |
0,0 |
1,1 |
7,8 |
0,3 |
|
2 500 to 10 000 km |
0,0 |
0,9 |
14,2 |
0,2 |
0,0 |
1,1 |
17,0 |
0,3 |
|
Above 10 000 km |
0,0 |
0,9 |
28,3 |
0,2 |
0,0 |
1,1 |
34,0 |
0,3 |
|
Agricultural Residues with density > 0,2 t/m3 |
1 to 500 km |
0,0 |
0,9 |
2,6 |
0,2 |
0,0 |
1,1 |
3,1 |
0,3 |
500 to 2 500 km |
0,0 |
0,9 |
3,6 |
0,2 |
0,0 |
1,1 |
4,4 |
0,3 |
|
2 500 to 10 000 km |
0,0 |
0,9 |
7,1 |
0,2 |
0,0 |
1,1 |
8,5 |
0,3 |
|
Above 10 000 km |
0,0 |
0,9 |
13,6 |
0,2 |
0,0 |
1,1 |
16,3 |
0,3 |
|
Straw pellets |
1 to 500 km |
0,0 |
5,0 |
3,0 |
0,2 |
0,0 |
6,0 |
3,6 |
0,3 |
500 to 10 000 km |
0,0 |
5,0 |
4,6 |
0,2 |
0,0 |
6,0 |
5,5 |
0,3 |
|
Above 10 000 km |
0,0 |
5,0 |
8,3 |
0,2 |
0,0 |
6,0 |
10,0 |
0,3 |
|
Bagasse briquettes |
500 to 10 000 km |
0,0 |
0,3 |
4,3 |
0,4 |
0,0 |
0,4 |
5,2 |
0,5 |
Above 10 000 km |
0,0 |
0,3 |
8,0 |
0,4 |
0,0 |
0,4 |
9,5 |
0,5 |
|
Palm Kernel Meal |
Above 10 000 km |
21,6 |
21,1 |
11,2 |
0,2 |
21,6 |
25,4 |
13,5 |
0,3 |
Palm Kernel Meal (no CH4 emissions from oil mill) |
Above 10 000 km |
21,6 |
3,5 |
11,2 |
0,2 |
21,6 |
4,2 |
13,5 |
0,3 |
Disaggregated default values for biogas for the production of electricity
Biomass fuel production system |
Technology |
TYPICAL VALUE [g CO2eq/MJ] |
DEFAULT VALUE [g CO2eq/MJ] |
|||||||||
Cultivation |
Processing |
Non-CO2 emissions from the fuel in use |
Transport |
Manure credits |
Cultivation |
Processing |
Non-CO2 emissions from the fuel in use |
Transport |
Manure credits |
|||
Wet manure(14) |
case 1 |
Open digestate |
0,0 |
69,6 |
8,9 |
0,8 |
– 107,3 |
0,0 |
97,4 |
12,5 |
0,8 |
– 107,3 |
Close digestate |
0,0 |
0,0 |
8,9 |
0,8 |
– 97,6 |
0,0 |
0,0 |
12,5 |
0,8 |
– 97,6 |
||
case 2 |
Open digestate |
0,0 |
74,1 |
8,9 |
0,8 |
– 107,3 |
0,0 |
103,7 |
12,5 |
0,8 |
– 107,3 |
|
Close digestate |
0,0 |
4,2 |
8,9 |
0,8 |
– 97,6 |
0,0 |
5,9 |
12,5 |
0,8 |
– 97,6 |
||
case 3 |
Open digestate |
0,0 |
83,2 |
8,9 |
0,9 |
– 120,7 |
0,0 |
116,4 |
12,5 |
0,9 |
– 120,7 |
|
Close digestate |
0,0 |
4,6 |
8,9 |
0,8 |
– 108,5 |
0,0 |
6,4 |
12,5 |
0,8 |
– 108,5 |
||
Maize whole plant(15) |
case 1 |
Open digestate |
15,6 |
13,5 |
8,9 |
0,0(16) |
— |
15,6 |
18,9 |
12,5 |
0,0 |
— |
Close digestate |
15,2 |
0,0 |
8,9 |
0,0 |
— |
15,2 |
0,0 |
12,5 |
0,0 |
— |
||
case 2 |
Open digestate |
15,6 |
18,8 |
8,9 |
0,0 |
— |
15,6 |
26,3 |
12,5 |
0,0 |
— |
|
Close digestate |
15,2 |
5,2 |
8,9 |
0,0 |
— |
15,2 |
7,2 |
12,5 |
0,0 |
— |
||
case 3 |
Open digestate |
17,5 |
21,0 |
8,9 |
0,0 |
— |
17,5 |
29,3 |
12,5 |
0,0 |
— |
|
Close digestate |
17,1 |
5,7 |
8,9 |
0,0 |
— |
17,1 |
7,9 |
12,5 |
0,0 |
— |
||
Biowaste |
case 1 |
Open digestate |
0,0 |
21,8 |
8,9 |
0,5 |
— |
0,0 |
30,6 |
12,5 |
0,5 |
— |
Close digestate |
0,0 |
0,0 |
8,9 |
0,5 |
— |
0,0 |
0,0 |
12,5 |
0,5 |
— |
||
case 2 |
Open digestate |
0,0 |
27,9 |
8,9 |
0,5 |
— |
0,0 |
39,0 |
12,5 |
0,5 |
— |
|
Close digestate |
0,0 |
5,9 |
8,9 |
0,5 |
— |
0,0 |
8,3 |
12,5 |
0,5 |
— |
||
case 3 |
Open digestate |
0,0 |
31,2 |
8,9 |
0,5 |
— |
0,0 |
43,7 |
12,5 |
0,5 |
— |
|
Close digestate |
0,0 |
6,5 |
8,9 |
0,5 |
— |
0,0 |
9,1 |
12,5 |
0,5 |
— |
Disaggregated default values for biomethane
Biomethane production system |
Technological option |
TYPICAL VALUE [g CO2eq/MJ] |
DEFAULT VALUE [g CO2eq/MJ] |
|||||||||||
Cultivation |
Processing |
Upgrading |
Transport |
Compression at filling station |
Manure credits |
Cultivation |
Processing |
Upgrading |
Transport |
Compression at filling station |
Manure credits |
|||
Wet manure |
Open digestate |
no off-gas combustion |
0,0 |
84,2 |
19,5 |
1,0 |
3,3 |
– 124,4 |
0,0 |
117,9 |
27,3 |
1,0 |
4,6 |
– 124,4 |
off-gas combustion |
0,0 |
84,2 |
4,5 |
1,0 |
3,3 |
– 124,4 |
0,0 |
117,9 |
6,3 |
1,0 |
4,6 |
– 124,4 |
||
Close digestate |
no off-gas combustion |
0,0 |
3,2 |
19,5 |
0,9 |
3,3 |
– 111,9 |
0,0 |
4,4 |
27,3 |
0,9 |
4,6 |
– 111,9 |
|
off-gas combustion |
0,0 |
3,2 |
4,5 |
0,9 |
3,3 |
– 111,9 |
0,0 |
4,4 |
6,3 |
0,9 |
4,6 |
– 111,9 |
||
Maize whole plant |
Open digestate |
no off-gas combustion |
18,1 |
20,1 |
19,5 |
0,0 |
3,3 |
— |
18,1 |
28,1 |
27,3 |
0,0 |
4,6 |
— |
off-gas combustion |
18,1 |
20,1 |
4,5 |
0,0 |
3,3 |
— |
18,1 |
28,1 |
6,3 |
0,0 |
4,6 |
— |
||
Close digestate |
no off-gas combustion |
17,6 |
4,3 |
19,5 |
0,0 |
3,3 |
— |
17,6 |
6,0 |
27,3 |
0,0 |
4,6 |
— |
|
off-gas combustion |
17,6 |
4,3 |
4,5 |
0,0 |
3,3 |
— |
17,6 |
6,0 |
6,3 |
0,0 |
4,6 |
— |
||
Biowaste |
Open digestate |
no off-gas combustion |
0,0 |
30,6 |
19,5 |
0,6 |
3,3 |
— |
0,0 |
42,8 |
27,3 |
0,6 |
4,6 |
— |
off-gas combustion |
0,0 |
30,6 |
4,5 |
0,6 |
3,3 |
— |
0,0 |
42,8 |
6,3 |
0,6 |
4,6 |
— |
||
Close digestate |
no off-gas combustion |
0,0 |
5,1 |
19,5 |
0,5 |
3,3 |
— |
0,0 |
7,2 |
27,3 |
0,5 |
4,6 |
— |
|
off-gas combustion |
0,0 |
5,1 |
4,5 |
0,5 |
3,3 |
— |
0,0 |
7,2 |
6,3 |
0,5 |
4,6 |
— |
D. TOTAL TYPICAL AND DEFAULT VALUES FOR BIOMASS FUEL PATHWAYS
Biomass fuel production system |
Transport distance |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
Woodchips from forest residues |
1 to 500 km |
5 |
6 |
500 to 2 500 km |
7 |
9 |
|
2 500 to 10 000 km |
12 |
15 |
|
Above 10 000 km |
22 |
27 |
|
Woodchips from short rotation coppice (Eucalyptus) |
2 500 to 10 000 km |
16 |
18 |
Woodchips from short rotation coppice (Poplar – Fertilised) |
1 to 500 km |
8 |
9 |
500 to 2 500 km |
10 |
11 |
|
2 500 to 10 000 km |
15 |
18 |
|
Above 10 000 km |
25 |
30 |
|
Woodchips from short rotation coppice (Poplar – No fertilisation) |
1 to 500 km |
6 |
7 |
500 to 2 500 km |
8 |
10 |
|
2 500 to 10 000 km |
14 |
16 |
|
Above 10 000 km |
24 |
28 |
|
Woodchips from stemwood |
1 to 500 km |
5 |
6 |
500 to 2 500 km |
7 |
8 |
|
2 500 to 10 000 km |
12 |
15 |
|
Above 10 000 km |
22 |
27 |
|
Woodchips from industry residues |
1 to 500 km |
4 |
5 |
500 to 2 500 km |
6 |
7 |
|
2 500 to 10 000 km |
11 |
13 |
|
Above 10 000 km |
21 |
25 |
|
Wood briquettes or pellets from forest residues (case 1) |
1 to 500 km |
29 |
35 |
500 to 2 500 km |
29 |
35 |
|
2 500 to 10 000 km |
30 |
36 |
|
Above 10 000 km |
34 |
41 |
|
Wood briquettes or pellets from forest residues (case 2a) |
1 to 500 km |
16 |
19 |
500 to 2 500 km |
16 |
19 |
|
2 500 to 10 000 km |
17 |
21 |
|
Above 10 000 km |
21 |
25 |
|
Wood briquettes or pellets from forest residues (case 3a) |
1 to 500 km |
6 |
7 |
500 to 2 500 km |
6 |
7 |
|
2 500 to 10 000 km |
7 |
8 |
|
Above 10 000 km |
11 |
13 |
|
Wood briquettes or pellets from short rotation coppice (Eucalyptus – case 1) |
2 500 to 10 000 km |
33 |
39 |
Wood briquettes or pellets from short rotation coppice (Eucalyptus – case 2a) |
2 500 to 10 000 km |
20 |
23 |
Wood briquettes or pellets from short rotation coppice (Eucalyptus – case 3a) |
2 500 to 10 000 km |
10 |
11 |
Wood briquettes or pellets from short rotation coppice (Poplar – Fertilised – case 1) |
1 to 500 km |
31 |
37 |
500 to 10 000 km |
32 |
38 |
|
Above 10 000 km |
36 |
43 |
|
Wood briquettes or pellets from short rotation coppice (Poplar – Fertilised – case 2a) |
1 to 500 km |
18 |
21 |
500 to 10 000 km |
20 |
23 |
|
Above 10 000 km |
23 |
27 |
|
Wood briquettes or pellets from short rotation coppice (Poplar – Fertilised – case 3a) |
1 to 500 km |
8 |
9 |
500 to 10 000 km |
10 |
11 |
|
Above 10 000 km |
13 |
15 |
|
Wood briquettes or pellets from short rotation coppice (Poplar – no fertilisation – case 1) |
1 to 500 km |
30 |
35 |
500 to 10 000 km |
31 |
37 |
|
Above 10 000 km |
35 |
41 |
|
Wood briquettes or pellets from short rotation coppice (Poplar – no fertilisation – case 2a) |
1 to 500 km |
16 |
19 |
500 to 10 000 km |
18 |
21 |
|
Above 10 000 km |
21 |
25 |
|
Wood briquettes or pellets from short rotation coppice (Poplar – no fertilisation – case 3a) |
1 to 500 km |
6 |
7 |
500 to 10 000 km |
8 |
9 |
|
Above 10 000 km |
11 |
13 |
|
Wood briquettes or pellets from stemwood (case 1) |
1 to 500 km |
29 |
35 |
500 to 2 500 km |
29 |
34 |
|
2 500 to 10 000 km |
30 |
36 |
|
Above 10 000 km |
34 |
41 |
|
Wood briquettes or pellets from stemwood (case 2a) |
1 to 500 km |
16 |
18 |
500 to 2 500 km |
15 |
18 |
|
2 500 to 10 000 km |
17 |
20 |
|
Above 10 000 km |
21 |
25 |
|
Wood briquettes or pellets from stemwood (case 3a) |
1 to 500 km |
5 |
6 |
500 to 2 500 km |
5 |
6 |
|
2 500 to 10 000 km |
7 |
8 |
|
Above 10 000 km |
11 |
12 |
|
Wood briquettes or pellets from wood industry residues (case 1) |
1 to 500 km |
17 |
21 |
500 to 2 500 km |
17 |
21 |
|
2 500 to 10 000 km |
19 |
23 |
|
Above 10 000 km |
22 |
27 |
|
Wood briquettes or pellets from wood industry residues (case 2a) |
1 to 500 km |
9 |
11 |
500 to 2 500 km |
9 |
11 |
|
2 500 to 10 000 km |
10 |
13 |
|
Above 10 000 km |
14 |
17 |
|
Wood briquettes or pellets from wood industry residues (case 3a) |
1 to 500 km |
3 |
4 |
500 to 2 500 km |
3 |
4 |
|
2 500 to 10 000 |
5 |
6 |
|
Above 10 000 km |
8 |
10 |
Biomass fuel production system |
Transport distance |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
Agricultural Residues with density < 0,2 t/m3 (17) |
1 to 500 km |
4 |
4 |
500 to 2 500 km |
8 |
9 |
|
2 500 to 10 000 km |
15 |
18 |
|
Above 10 000 km |
29 |
35 |
|
Agricultural Residues with density > 0,2 t/m3 (18) |
1 to 500 km |
4 |
4 |
500 to 2 500 km |
5 |
6 |
|
2 500 to 10 000 km |
8 |
10 |
|
Above 10 000 km |
15 |
18 |
|
Straw pellets |
1 to 500 km |
8 |
10 |
500 to 10 000 km |
10 |
12 |
|
Above 10 000 km |
14 |
16 |
|
Bagasse briquettes |
500 to 10 000 km |
5 |
6 |
Above 10 000 km |
9 |
10 |
|
Palm Kernel Meal |
Above 10 000 km |
54 |
61 |
Palm Kernel Meal (no CH4 emissions from oil mill) |
Above 10 000 km |
37 |
40 |
Typical and default values – biogas for electricity
Biogas production system |
Technological option |
Typical value |
Default value |
|
Greenhouse gas emissions (g CO2eq/MJ) |
Greenhouse gas emissions (g CO2eq/MJ) |
|||
Biogas for electricity from wet manure |
Case 1 |
Open digestate(19) |
– 28 |
3 |
Close digestate(20) |
– 88 |
– 84 |
||
Case 2 |
Open digestate |
– 23 |
10 |
|
Close digestate |
– 84 |
– 78 |
||
Case 3 |
Open digestate |
– 28 |
9 |
|
Close digestate |
– 94 |
– 89 |
||
Biogas for electricity from maize whole plant |
Case 1 |
Open digestate |
38 |
47 |
Close digestate |
24 |
28 |
||
Case 2 |
Open digestate |
43 |
54 |
|
Close digestate |
29 |
35 |
||
Case 3 |
Open digestate |
47 |
59 |
|
Close digestate |
32 |
38 |
||
Biogas for electricity from biowaste |
Case 1 |
Open digestate |
31 |
44 |
Close digestate |
9 |
13 |
||
Case 2 |
Open digestate |
37 |
52 |
|
Close digestate |
15 |
21 |
||
Case 3 |
Open digestate |
41 |
57 |
|
Close digestate |
16 |
22 |
Typical and default values for biomethane
Biomethane production system |
Technological option |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
Biomethane from wet manure |
Open digestate, no off-gas combustion(21) |
– 20 |
22 |
Open digestate, off-gas combustion(22) |
– 35 |
1 |
|
Close digestate, no off-gas combustion |
– 88 |
– 79 |
|
Close digestate, off-gas combustion |
– 103 |
– 100 |
|
Biomethane from maize whole plant |
Open digestate, no off-gas combustion |
58 |
73 |
Open digestate, off-gas combustion |
43 |
52 |
|
Close digestate, no off-gas combustion |
41 |
51 |
|
Close digestate, off-gas combustion |
26 |
30 |
|
Biomethane from biowaste |
Open digestate, no off-gas combustion |
51 |
71 |
Open digestate, off-gas combustion |
36 |
50 |
|
Close digestate, no off-gas combustion |
25 |
35 |
|
Close digestate, off-gas combustion |
10 |
14 |
Typical and default values – biogas for electricity – mixtures of manure and maize: greenhouse gas emissions with shares given on a fresh mass basis
Biogas production system |
Technological options |
Greenhouse gas emissions – typical value (g CO2eq/MJ) |
Greenhouse gas emissions – default value (g CO2eq/MJ) |
|
Manure – Maize 80 % - 20 % |
Case 1 |
Open digestate |
17 |
33 |
Close digestate |
– 12 |
– 9 |
||
Case 2 |
Open digestate |
22 |
40 |
|
Close digestate |
– 7 |
– 2 |
||
Case 3 |
Open digestate |
23 |
43 |
|
Close digestate |
– 9 |
– 4 |
||
Manure – Maize 70 % - 30 % |
Case 1 |
Open digestate |
24 |
37 |
Close digestate |
0 |
3 |
||
Case 2 |
Open digestate |
29 |
45 |
|
Close digestate |
4 |
10 |
||
Case 3 |
Open digestate |
31 |
48 |
|
Close digestate |
4 |
10 |
||
Manure – Maize 60 % - 40 % |
Case 1 |
Open digestate |
28 |
40 |
Close digestate |
7 |
11 |
||
Case 2 |
Open digestate |
33 |
47 |
|
Close digestate |
12 |
18 |
||
Case 3 |
Open digestate |
36 |
52 |
|
Close digestate |
12 |
18 |
Typical and default values – biomethane - mixtures of manure and maize: greenhouse gas emissions with shares given on a fresh mass basis
Biomethane production system |
Technological options |
Typical value |
Default value |
(g CO2eq/MJ) |
(g CO2eq/MJ) |
||
Manure – Maize 80 % - 20 % |
Open digestate, no off-gas combustion |
32 |
57 |
Open digestate, off-gas combustion |
17 |
36 |
|
Close digestate, no off-gas combustion |
– 1 |
9 |
|
Close digestate, off-gas combustion |
– 16 |
– 12 |
|
Manure – Maize 70 % - 30 % |
Open digestate, no off-gas combustion |
41 |
62 |
Open digestate, off-gas combustion |
26 |
41 |
|
Close digestate, no off-gas combustion |
13 |
22 |
|
Close digestate, off-gas combustion |
– 2 |
1 |
|
Manure – Maize 60 % - 40 % |
Open digestate, no off-gas combustion |
46 |
66 |
Open digestate, off-gas combustion |
31 |
45 |
|
Close digestate, no off-gas combustion |
22 |
31 |
|
Close digestate, off-gas combustion |
7 |
10 |
ANNEX VII
ACCOUNTING OF ENERGY FROM HEAT PUMPS
ANNEX VIII
PART A. PROVISIONAL ESTIMATED INDIRECT LAND-USE CHANGE EMISSIONS FROM BIOFUEL, BIOLIQUID AND BIOMASS FUEL FEEDSTOCK (g CO
2
eq/MJ) (1)
Feedstock group |
Mean(2) |
Interpercentile range derived from the sensitivity analysis(3) |
Cereals and other starch-rich crops |
12 |
8 to 16 |
Sugars |
13 |
4 to 17 |
Oil crops |
55 |
33 to 66 |
PART B. BIOFUELS, BIOLIQUIDS AND BIOMASS FUELS FOR WHICH THE ESTIMATED INDIRECT LAND-USE CHANGE EMISSIONS ARE CONSIDERED TO BE ZERO
ANNEX IX
ANNEX X
PART A
Repealed Directive with a list of the successive amendments thereto (referred to in Article 37)
Directive 2009/28/EC of the European Parliament and of the Council |
|
Council Directive 2013/18/EU |
|
Directive (EU) 2015/1513 of the European Parliament and of the Council |
Only Article 2 |
PART B
Time-limits for transposition into national law
(referred to in Article 36)
Directive |
Time-limit for transposition |
2009/28/EC |
25 June 2009 |
2013/18/EU |
1 July 2013 |
(EU) 2015/1513 |
10 September 2017 |
ANNEX XI
Correlation table
Directive 2009/28/EC |
This Directive |
Article 1 |
Article 1 |
Article 2, first subparagraph |
Article 2, first subparagraph |
Article 2, second subparagraph, introductory wording |
Article 2, second subparagraph, introductory wording |
Article 2, second subparagraph, point (a) |
Article 2, second subparagraph, point (1) |
Article 2, second subparagraph, point (b) |
— |
— |
Article 2, second subparagraph, point (2) |
Article 2, second subparagraph, point (c) |
Article 2, second subparagraph, point (3) |
Article 2, second subparagraph, point (d) |
— |
Article 2, second subparagraph, points (e), (f), (g), (h), (i), (j), (k), (l), (m), (n), (o), (p), (q), (r), (s), (t), (u), (v) and (w) |
Article 2, second subparagraph, points (24), (4), (19), (32), (33), (12), (5), (6), (45), (46), (47), (23), (39), (41), (42), (43), (36), (44) and (37) |
— |
Article 2, second subparagraph, points (7), (8), (9), (10), (11), (13), (14), (15), (16), (17), (18), (20), (21), (22), (25), (26), (27), (28), (29), (30), (31), (34), (35), (38) and (40) |
Article 3 |
— |
— |
Article 3 |
Article 4 |
— |
— |
Article 4 |
— |
Article 5 |
— |
Article 6 |
Article 5(1) |
Article 7(1) |
Article 5(2) |
— |
Article 5(3) |
Article 7(2) |
Article 5(4), first, second, third and fourth subparagraphs |
Article 7(3), first, second, third and fourth subparagraphs |
— |
Article 7(3), fifth and sixth subparagraphs |
— |
Article 7(4) |
Article 5(5), |
Article 27(1), first subparagraph, point (c) |
Article 5(6) and (7) |
Article 7(5) and (6) |
Article 6(1) |
Article 8(1) |
— |
Article 8(2) and (3) |
Article 6(2) and (3) |
Article 8(4) and (5) |
Article 7(1), (2), (3), (4) and (5) |
Article 9(1), (2), (3), (4) and (5) |
— |
Article 9(6) |
Article 8 |
Article 10 |
Article 9(1) |
Article 11(1) |
Article 9(2), first subparagraph, points (a), (b) and (c) |
Article 11(2), first subparagraph, points (a), (b) and (c) |
— |
Article 11(2), first subparagraph, point (d) |
Article 10 |
Article 12 |
Article 11(1), (2) and (3) |
Article 13(1), (2) and (3) |
— |
Article 13(4) |
Article 12 |
Article 14 |
Article 13(1), first subparagraph |
Article 15(1), first subparagraph |
Article 13(1), second subparagraph |
Article 15(1), second subparagraph |
Article 13(1), second subparagraph, points (a) and (b) |
— |
Article 13(1), second subparagraph, points (c), (d), (e) and (f) |
Article 15(1), second subparagraph, points (a), (b), (c) and (d) |
Article 13(2), (3), (4) and (5) |
Article 15(2), (3), (4) and (5) |
Article 13(6), first subparagraph |
Article 15(6), first subparagraph |
Article 13(6), second, third, fourth and fifth subparagraphs |
— |
— |
Article 15, (7) and (8) |
— |
Article 16 |
— |
Article 17 |
Article 14 |
Article 18 |
Article 15(1) |
Article 19(1) |
Article 15(2), first, second and third subparagraphs |
Article 19(2) first, second and third subparagraphs |
— |
Article 19(2), fourth and fifth subparagraphs |
Article 15(2), fourth subparagraph |
Article 19(2), sixth subparagraph |
Article 15(3) |
— |
— |
Article 19(3) and (4) |
Article 15(4) and (5) |
Article 19(5) and (6) |
Article 15(6), first subparagraph, point (a) |
Article 19(7), first subparagraph, point (a) |
Article 15(6), first subparagraph, point (b)(i) |
Article 19(7), first subparagraph, point (b)(i) |
— |
Article 19(7), first subparagraph, point (b)(ii) |
Article 15(6), first subparagraph, point (b)(ii) |
Article 19(7), first subparagraph, point (b)(iii) |
Article 15(6), first subparagraph, points (c), (d), (e) and (f) |
Article 19(7), first subparagraph, points (c), (d), (e) and (f) |
— |
Article 19(7), second subparagraph |
Article 15(7) |
Article 19(8) |
Article 15(8) |
— |
Article 15(9) and (10) |
Article 19(9) and (10) |
— |
Article 19(11) |
Article 15(11) |
Article 19(12) |
Article 15(12) |
— |
— |
Article 19(13) |
Article 16(1), (2), (3), (4), (5), (6), (7) and (8) |
— |
Article 16(9), (10) and (11) |
Article 20(1), (2) and (3) |
— |
Article 21 |
— |
Article 22 |
— |
Article 23 |
— |
Article 24 |
— |
Article 25 |
— |
Article 26 |
— |
Article 27 |
— |
Article 28 |
Article 17(1), first and second subparagraphs |
Article 29(1), first and second subparagraphs |
— |
Article 29(1), third, fourth and fifth subparagraphs |
— |
Article 29(2) |
Article 17(2), first and second subparagraphs |
— |
Article 17(2), third subparagraph |
Article 29(10), third subparagraph |
Article 17(3), first subparagraph, point (a) |
Article 29(3), first subparagraph, point (a) |
— |
Article 29(3), first subparagraph, point (b) |
Article 17(3), first subparagraph, points (b) and (c) |
Article 29(3), first subparagraph, points (c) and (d) |
— |
Article 29(3), second subparagraph |
Article 17(4) |
Article 29(4) |
Article 17(5) |
Article 29(5) |
Article 17(6) and (7) |
— |
— |
Article 29(6), (7), (8), (9), (10) and (11) |
Article 17(8) |
Article 29(12) |
Article 17(9) |
— |
— |
Article 29(13) and (14) |
Article 18(1), first subparagraph |
Article 30(1), first subparagraph |
Article 18(1), first subparagraph, points (a), (b) and (c) |
Article 30(1), first subparagraph, points (a), (c) and (d) |
— |
Article 30(1), first subparagraph, point (b) |
— |
Article 30(1), second subparagraph |
Article 18(2) |
— |
— |
Article 30(2) |
Article 18(3), first subparagraph |
Article 30(3), first subparagraph |
Article 18(3), second and third subparagraphs |
— |
Article 18(3), fourth and fifth subparagraphs |
Article 30(3), second and third subparagraphs |
Article 18(4), first subparagraph |
— |
Article 18(4), second and third subparagraphs |
Article 30(4), first and second subparagraphs |
Article 18(4), fourth subparagraph |
— |
Article 18(5), first and second subparagraphs |
Article 30(7), first and second subparagraphs |
Article 18(5), third subparagraph |
Article 30(8), first and second subparagraphs |
Article 18(5), fourth subparagraph |
Article 30(5), third subparagraph |
— |
Article 30(6), first subparagraph |
Article 18(5), fifth subparagraph |
Article 30(6), second subparagraph |
Article 18(6), first and second subparagraphs |
Article 30(5), first and second subparagraphs |
Article 18(6), third subparagraph |
— |
Article 18(6), fourth subparagraph |
Article 30(6), third subparagraph |
— |
Article 30(6), fourth subparagraph |
Article 18(6), fifth subparagraph |
Article 30(6), fifth subparagraph |
Article 18(7) |
Article 30(9), first subparagraph |
— |
Article 30(9), second subparagraph |
Article 18(8) and (9) |
— |
— |
Article 30(10) |
Article 19(1), first subparagraph |
Article 31(1), first subparagraph |
Article 19(1), first subparagraph, points (a), (b) and (c) |
Article 31(1), first subparagraph, points (a), (b) and (c) |
— |
Article 31(1), first subparagraph, point (d) |
Article 19(2), (3) and (4) |
Article 31(2), (3) and (4) |
Article 19(5) |
— |
Article 19(7), first subparagraph |
Article 31(5), first subparagraph |
Article 19(7), first subparagraph, first, second third and fourth indents |
— |
Article 19(7), second and third subparagraphs |
Article 31(5), second and third subparagraphs |
Article 19(8) |
Article 31(6) |
Article 20 |
Article 32 |
Article 22 |
— |
Article 23(1) and (2) |
Article 33(1) and (2) |
Article 23(3), (4), (5), (6), (7) and (8) |
— |
Article 23(9) |
Article 33(3) |
Article 23(10) |
Article 33(4) |
Article 24 |
— |
Article 25(1) |
Article 34(1) |
Article 25(2) |
Article 34(2) |
Article 25(3) |
Article 34(3) |
Article 25a(1) |
Article 35(1) |
Article 25a(2) |
Article 35(2) and (3) |
Article 25a(3) |
Article 35(4) |
— |
Article 35(5) |
Article 25a(4) and (5) |
Article 35(6) and (7) |
Article 26 |
— |
Article 27 |
Article 36 |
— |
Article 37 |
Article 28 |
Article 38 |
Article 29 |
Article 39 |
Annex I |
Annex I |
Annex II |
Annex II |
Annex III |
Annex III |
Annex IV |
Annex IV |
Annex V |
Annex V |
Annex VI |
— |
— |
Annex VI |
Annex VII |
Annex VII |
Annex VIII |
Annex VIII |
Annex IX |
Annex IX |
— |
Annex X |
— |
Annex XI |