COMMISSION IMPLEMENTING REGULATION (EU) 2022/996
of 14 June 2022
on rules to verify sustainability and greenhouse gas emissions saving criteria and low indirect land-use change-risk criteria
(Text with EEA relevance)
CHAPTER I
INTRODUCTION
Article 1
Subject matter
Article 2
Definitions
CHAPTER II
GENERAL RULES ON GOVERNANCE, INTERNAL MONITORING, COMPLAINTS PROCEDURES AND TRANSPARENCY OF VOLUNTARY SCHEMES
Article 3
Governance structure of the voluntary scheme
Article 4
Non-conformities of economic operators under the scheme
Article 5
Internal monitoring, complaints procedure and documentation management system
Article 6
Publication of information by voluntary schemes
Article 7
Change of scheme by economic operators
Article 8
Recognition of other voluntary schemes
Article 9
Recognition of national schemes
CHAPTER III
AUDIT PROCESS, AUDIT SCOPE, QUALIFICATIONS OF AUDITORS AND AUDIT SUPERVISION
Article 10
Audit process and levels of assurance
Article 11
Auditor competence
Article 12
Group auditing
Article 13
Auditing of waste and residues
Article 14
Auditing of actual GHG emission calculations
Article 15
Audits of mass balance systems
Article 16
Auditing of natural and non-natural highly-biodiverse grassland
Article 17
Supervision by the Member States and the Commission
CHAPTER IV
SPECIFIC RULES ON THE IMPLEMENTATION OF THE MASS BALANCE SYSTEM, THE UNION DATABASE AND THE ESTABLISHMENT OF GHG EMISSIONS AND BIOLOGICAL FRACTION OF FUELS
Article 18
Traceability and Union database
Article 19
Implementation of the mass balance system
Article 20
Determining the GHG emissions of biofuels, biomass fuels and bioliquids
Article 21
Specific rules for waste and residues
Article 22
Specific rules for recycled carbon fuels and renewable fuels of non-biological origin
Article 23
Specific rules for co-processing
CHAPTER V
SPECIFIC RULES ON COMPLIANCE WITH THE REQUIREMENTS ON LOW ILUC-RISK CERTIFICATION
Article 24
Specific requirements for low ILUC-risk certification
Article 25
Specific requirements for proving additionality
Article 26
Production on unused, abandoned or severely degraded land
Article 27
Determining additional biomass for yield increase measures
CHAPTER VI
FINAL PROVISIONS
Article 28
Entry into force and application
ANNEX I
DATA TO BE TRANSMITTED THROUGH THE WHOLE SUPPLY CHAIN AND TRANSACTION DATA
ANNEX II
MINIMUM CONTENT OF AUDIT REPORTS, SUMMARY AUDIT REPORTS OR CERTIFICATES
A.
Minimum content of the audit report
B.
Minimum content of the summary audit report or certificate
ANNEX III
LIST OF INFORMATION TO BE REPORTED BY VOLUNTARY SCHEMES IN THEIR ANNUAL ACTIVITY REPORTS TO THE COMMISSION
ANNEX IV
NON-EXHAUSTIVE LIST OF WASTE AND RESIDUES CURRENTLY COVERED BY ANNEX IX TO DIRECTIVE (EU) 2018/2001
Category in Annex IX to Directive (EU) 2018/2001 |
Feedstock sub-category/examples |
Annex IX Part A d) |
Drink waste |
Annex IX Part A d) |
Fruit/vegetable residues and waste (Only tails, leaves, stalks and husks) |
Annex IX Part A d) |
Bean shells, silverskin, and dust: cocoa, coffee |
Annex IX Part A p) |
Shells/husks and derivatives:, soy hulls |
Annex IX Part A d) |
Residues and waste from production of hot beverages: spent coffee grounds, spent tea leaves |
Annex IX Part A d) |
Dairy waste scum |
Annex IX Part A d) |
Food waste oil: oil extracted from waste food from industry |
Annex IX Part A d) |
Non-edible cereal residues and waste from grain milling and processing: wheat, corn, barley, rice |
Annex IX Part A d) |
Olive oil extraction residues and waste: olive stones |
Annex IX Part A p) |
Agricultural harvesting residues |
Annex IX Part A q) |
Palm fronds, palm trunk |
Annex IX Part A q) |
Damaged trees |
Annex IX Part A p) |
Unused feed/fodder from ley |
Annex IX Part B b) |
Waste fish oil classified as categories 1 and 2 in accordance with Regulation (EC) No 1069/2009. |
Annex IX Part A d) |
Other slaughterhouse waste (Animal residues (non-fat) Cat 1) |
Annex IX Part A d) |
Industrial wastewater and derivatives |
Annex IX Part A g) |
Palm sludge oil (PSO) |
Annex IX Part A d) |
Industrial storage settlings |
Annex IX Part A d) |
Biogenic fraction of end-of-life tyres |
Annex IX Part A q) |
Recycled/waste wood |
Annex IX Part A d) |
Humins |
Annex IX Part A d) |
Spent bleaching earth |
ANNEX V
METHODOLOGY FOR DETERMINING THE EMISSION SAVINGS FROM SOIL CARBON ACCUMULATION VIA IMPROVED AGRICULTURAL MANAGEMENT
ANNEX VI
NON-EXAUSTIVE LISTS OF EXAMPLES OF ESSENTIAL MANAGEMENT AND MONITORING PRACTICES TO PROMOTE AND MONITOR SOIL CARBON SEQUESTRATION AND SOIL QUALITY
Requirement |
Soil quality parameter |
At least a 3-crop rotation, including legumes or green manure in the cropping system, taking into account the agronomic crop succession requirements specific to each crops grown and climatic conditions. A multi-species cover crop between cash crops counts as one. |
Promoting soil fertility, soil carbon, limiting soil erosion, soil biodiversity and promoting pathogen control |
Sowing of cover/catch/intermediary crops using a locally appropriate species mixture with at least one legume. Crop management practices should ensure minimum soil cover to avoid bare soil in periods that are most sensitive. |
Promoting soil fertility, soil carbon retention, avoiding soil erosion, soil biodiversity |
Prevent soil compaction (frequency and timing of field operations should be planned to avoid traffic on wet soil; tillage operation should be avoided or greatly reduced on wet soils; controlled traffic planning can be used). |
Retention of soil structure, avoiding soil erosion, retaining soil biodiversity |
No burning of arable stubble except where the authority has granted an exemption for plant health reasons. |
Soil carbon retention, resource efficiency |
On acidic soils where liming is applied, where soils are degraded and where acidification impacts crop productivity. |
Improved soil structure, soil biodiversity, soil carbon |
Reduce tillage/no tillage – Erosion control – addition of organic amendments (biochar, compost, manure, crop residues) – use of cover crops, rewetting Revegetation: planting (species change, protection with straw mulch) – landscape features – agroforestry |
Increase soil organic carbon |
Monitoring approach |
Method of verification/demonstration |
Risk assessment |
Identifying areas with high risk of soil quality decline helps prevent these risks and focus on areas with the greatest impact. |
Soil organic matter analysis |
Consistent sampling of soil organic matter improves monitoring so that this matter can be maintained or improved. |
Soil organic carbon analysis |
Soil organic carbon is seen as a good marker for wider soil quality. |
Soil conditioning index sampling |
A positive value indicates the system is expected to have increasing soil organic matter. |
Soil erosion assessment |
Ensures that erosion is below a tolerable level, e.g. USDA Agricultural Research Service ‘t’ levels. |
Nutrient management plan |
A plan outlining nutrient strategy (focusing mostly on N, P, K) and fertiliser regimes can prevent nutrient imbalances. |
Regular soil pH analysis |
Monitoring pH helps identify imbalances in pH. |
ANNEX VII
METHODOLOGY FOR DETERMINING THE EMISSIONS FROM THE EXTRACTION OR CULTIVATION OF RAW MATERIALS
EMISSIONS FROM THE EXTRACTION OR CULTIVATION PROCESS ITSELF
1.1.
Fuel use (diesel oil, gasoline, heavy fuel oil, biofuels or other fuels) for farm machinery
1.2.
Chemical fertilisers and pesticides
1.3.
Seeding material
1.4.
Emissions from fertiliser acidification and liming application
1.4.1.
Emissions from neutralisation of fertiliser acidification
1.4.2.
Soil emissions from liming (aglime)
1.5.
Soil (nitrous oxide/N
2
O) emissions from crop cultivation
1.5.1.
Crop residue N input
1.5.2.
Crop and site-specific emission factors for N
2
O emissions from synthetic fertiliser and organic N application
Table 1
Crop-specific parameters to calculate N input from crop residues
(3)
Table 2
Constant and effect values for calculating N
2
O emissions from agricultural fields based on the S&B model
EMISSIONS FROM THE COLLECTION, DRYING AND STORAGE OF RAW MATERIALS
Emissions from collection
Biomass drying
ACCOUNTING FOR EMISSIONS FOR ELECTRICITY USED IN FARMING OPERATIONS
ANNEX VIII
MINIMUM REQUIREMENTS ON THE PROCESS AND METHOD FOR CERTIFYING LOW INDIRECT LAND-USE CHANGE (ILUC) RISK BIOMASS
A.
Process of low ILUC risk certification
1.
Content of the management plan
2.
Non-exhaustive list of additionality measures
Additionality category |
Additionality measure |
Example |
Mechanisation |
Machinery |
Adoption of machinery that reduces/complements existing workforce input to boost output or reduce losses. This could include sowing, precision farming, harvesting machinery or machinery to reduce post-harvest losses. |
Multi-cropping |
Sequential cropping |
Introduction of second crop on same land in the same year. |
Management |
Soil management |
Mulching instead of ploughing, low tillage. |
Fertilisation |
Optimisation of fertilisation regime, use of precision agriculture. |
|
Crop protection |
Change in weed, pest and disease control. |
|
Pollination |
Improved pollination practices. |
|
Other |
Leaves room for innovation, combinations of measures and unforeseen developments. |
|
Replanting (for perennial crops)(2) |
Choice of crop varieties |
Higher yield variety, better adaptation to eco-physiological or climatic conditions. |
B.
Additionality assessment: Financial attractiveness or barrier analysis tests
1.
Financial attractiveness test
2.
Non-financial barrier test
C.
Setting the dynamic yield baseline and calculation of the actual volume of low ILUC risk biomass
1.
Setting the dynamic yield baseline for annual crops
Crop |
Barley |
Maize |
Oil palm fruit |
Rapeseed |
Soybean |
Sugar beet |
Sugar cane |
Sunflower seed |
Wheat |
Slope-20 |
0,035 |
0,074 |
0,200 |
0,036 |
0,028 |
1,276 |
0,379 |
0,035 |
0,04 |
Slope-20 is based on 2008-2017. |
2.
Setting the dynamic yield baseline for perennial crops
Option 1a: Standard growth curve
Figure 1
Normalised standard growth curve palm yield
Years after planting |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
Normalised yield |
0 |
0 |
0,147 |
0,336 |
0,641 |
0,833 |
0,916 |
0,968 |
0,996 |
1 |
0,999 |
0,980 |
0,965 |
Years after planting |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
≥ 26 (*1) |
Normalised yield |
0,945 |
0,926 |
0,910 |
0,906 |
0,888 |
0,870 |
0,858 |
0,842 |
0,836 |
0,815 |
0,806 |
0,793 |
0,793 |
Years after planting |
1 to 3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
Annual percentage change |
- |
128,0 % |
90,6 % |
30,0 % |
10,0 % |
5,6 % |
2,9 % |
0,4 % |
-0,1 % |
-1,9 % |
-1,6 % |
-2,0 % |
Years after planting |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
≥ 26 (*2) |
Annual percentage change |
-2,1 % |
-1,7 % |
-0,5 % |
-1,9 % |
-2,0 % |
-1,4 % |
-1,8 % |
-0,8 % |
-2,5 % |
-1,1 % |
-1,6 % |
0 % |
Annual performance increase palm – business as usual |
1,37 % |
Based on FAOSTAT World+ 2008-2017 |
Option 1b: Economic operator provides the growth curve
Option 2: Group certification approach
3.
Setting the dynamic yield baseline for sequential cropping
Option 1. Demonstrate that the second crop does not lower the yield of the main crop
Option 2a. Determine a dynamic yield baseline for a system in which the main crop is the same each year
Option 2b. Determine a compensation factor for a system in which the main crop is different each year
4.
Calculating additional biomass volume
D.
Minimum content of the low ILUC risk certificate
ANNEX IX
STANDARD VALUES OF EMISSIONS FACTORS
|
parameter: |
|
GHG emission coefficient |
Fossil energy input |
||||
|
unit: |
gCO2,eq/g |
gCO2/kg |
gCH4/kg |
gN2O/kg |
gCO2-eq/kg |
MJfossil/kg |
|
|
|
|
|
|
|
|
|
|
Global warming potential |
|
|
|
|
|
|
||
|
CO2 |
|
1 |
|
|
|
|
|
|
CH4 |
|
28 |
|
|
|
|
|
|
N2O |
|
265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Agro inputs: |
|
|
|
|
|
|
||
N-fertiliser (kg N) |
|
|
|
|
|
|
||
|
Ammonium nitrate (AN) |
|
2 671 |
6,9 |
2,1 |
3 469 |
|
|
|
Ammonium sulphate (AS) |
|
2 560 |
6,5 |
0,0 |
2 724 |
|
|
|
Ammonium nitrate sulphate (ANS) |
|
2 561 |
8,9 |
1,3 |
3 162 |
|
|
|
Anhydrous ammonia |
|
2 662 |
6,8 |
0,0 |
2 832 |
|
|
|
Calcium ammonium nitrate (CAN) |
|
2 863 |
7,3 |
2,1 |
3 670 |
|
|
|
Calcium nitrate (CN) |
|
2 653 |
7,0 |
5,1 |
4 348 |
|
|
|
Urea |
|
1 703 |
9,3 |
0,0 |
1 935 |
|
|
|
Urea ammonium nitrate (UAN) |
|
2 182 |
7,5 |
1,1 |
2 693 |
|
|
P2O5-fertiliser (kg P2O5) |
|
|
|
|
|
|
||
|
Triple superphosphate (TSP) |
|
517 |
0,9 |
0,0 |
544 |
|
|
|
Rock phosphate 21 %P2O5 23 %SO3 |
|
95 |
0,0 |
0,0 |
95 |
|
|
|
Mono ammonium phosphate (MAP) 11 %N 52 %P2O5 |
|
967 |
2,5 |
0,0 |
1 029 |
|
|
|
Di-Ammonium-Phosphate (DAP) 18 %N 46 %P2O5 |
|
1 459 |
3,7 |
0,0 |
1 552 |
|
|
K2O-fertiliser (kg K2O) |
|
|
|
|
|
|
||
|
Muriate of Potash (MOP) 60 %K2O |
|
409 |
0,17 |
0,0 |
413 |
|
|
Other fertilisers |
|
|
|
|
|
|
||
|
NPK 15-15-15 |
|
4 261 |
10,0 |
1,7 |
5 013 |
|
|
|
MgO (kg MgO) |
|
769 |
0,0 |
0,0 |
769 |
|
|
|
Sodium (Na) fertiliser (kg Na) |
|
1 620 |
0,0 |
0,0 |
1 620 |
|
|
|
|
|
|
|
|
|
|
|
|
Seeds- barley |
|
189,5 |
0,08 |
0,4001 |
310,6 |
3,23 |
|
|
Seeds- eucalyptus cuttings |
|
0,0 |
0,00 |
0,0000 |
0,0 |
|
|
|
Seeds- maize |
|
189,5 |
0,08 |
0,4001 |
310,6 |
3,23 |
|
|
Seeds- poplar cuttings |
|
0,0 |
0,00 |
0,0000 |
0,0 |
|
|
|
Seeds- rapeseed |
|
451,0 |
0,27 |
1,0024 |
756,5 |
8,33 |
|
|
Seeds- rye |
|
191,0 |
0,08 |
0,4001 |
312,1 |
3,23 |
|
|
Seeds- soy bean |
|
0,0 |
0,00 |
0,0000 |
0,0 |
|
|
|
Seeds- sugar beet |
|
2 363,0 |
1,37 |
4,2096 |
3 651,7 |
38,44 |
|
|
Seeds- sugar cane |
|
4,97 |
0,00 |
0,0000 |
5,0 |
0,06 |
|
|
Seeds- sunflower |
|
451,0 |
0,27 |
1,0024 |
756,5 |
8,33 |
|
|
Seeds- triticale |
|
180,0 |
0,04 |
0,4000 |
300,2 |
3,00 |
|
|
Seeds- wheat |
|
163,7 |
0,04 |
0,4000 |
283,9 |
2,76 |
|
|
|
|
|
|
|
|
|
|
parameter: |
|
GHG emission coefficient |
Fossil energy input |
|||
|
unit: |
gCO2,eq/g |
gCO2/kg |
gCH4/kg |
gN2O/kg |
gCO2-eq/kg |
MJfossil/kg |
Residues (feedstock or input): |
|
|
|
|
|
|
|
|
Biogas digestate |
|
0,0 |
0,00 |
0,0000 |
0,0 |
0,00 |
|
EFB compost (palm oil) |
|
0,0 |
0,00 |
0,0000 |
0,0 |
0,00 |
|
Filter mud cake |
|
0,0 |
0,00 |
0,0000 |
0,0 |
0,00 |
|
parameter: |
GHG emission coefficient |
Fossil energy input |
Density |
LHV (lower heating value) MJ/kg |
||||
|
unit: |
gCO2/MJ |
gCH4/MJ |
gN2O/MJ |
gCO2-eq/MJ |
MJfossil/kg |
MJfossil/MJ |
kg/m3 |
(on a dry basis) |
Fuels- gases |
|
|
|
|
|
|
|
|
|
|
Natural gas (EU mix) |
66,00 |
0,0000 |
- |
66,00 |
|
1,2000 |
|
49,2 |
|
LPG |
66,30 |
0,0000 |
0,0000 |
66,31 |
|
1,2000 |
|
46,0 |
|
Methane |
|
|
|
|
|
|
|
50,0 |
Fuels- liquids (also conversion inputs) |
|
|
|
|
|
|
|
|
|
|
Diesel |
95,1 |
- |
- |
95,10 |
|
1,2300 |
832 |
43,1 |
|
Gasoline |
93,3 |
- |
- |
93,30 |
|
1,2000 |
745 |
43,2 |
|
Heavy fuel oil |
94,2 |
- |
- |
94,20 |
|
1,1600 |
970 |
40,5 |
|
Ethanol |
|
|
|
|
|
|
794 |
26,81 |
|
Methanol |
97,08 |
0,0001 |
0,0000 |
97,09 |
|
1,7639 |
793 |
19,95 |
|
DME |
|
|
|
|
|
|
670 |
28,4 |
|
FAME |
|
|
|
|
|
|
890 |
37,2 |
|
HVO |
|
|
|
|
|
|
|
44,0 |
|
PVO |
|
|
|
|
|
|
920 |
37,0 |
|
Syn diesel (BtL) |
|
|
|
|
|
|
780 |
44,0 |
|
Palm oil |
|
|
|
|
|
|
920 |
37,0 |
|
Rapeseed oil |
|
|
|
|
|
|
920 |
37,0 |
|
Soybean oil |
|
|
|
|
|
|
920 |
37,0 |
|
Sunflower oil |
|
|
|
|
|
|
920 |
37,0 |
|
parameter: |
GHG emission coefficient |
Fossil energy input |
Density |
LHV MJ/kg |
|||
|
unit: |
gCO2/MJ |
gCH4/MJ |
gN2O/MJ |
gCO2-eq/MJ |
MJfossil/MJ |
kg/m3 |
(on a dry basis) |
Fuels- solids (also conversion inputs) |
|
|
|
|
|
|
|
|
|
Hard coal |
102,62 |
0,3854 |
0,0003 |
112,32 |
1,0909 |
|
26,5 |
|
Lignite |
116,68 |
0,0014 |
0,0001 |
116,73 |
1,0149 |
|
9,2 |
|
Wood chips |
|
|
|
|
|
155 |
19,0 |
|
Wood pellets |
|
|
|
|
0,0080 |
650 |
19,0 |
|
parameter: |
Density |
LHV MJ/kg |
|
unit: |
kg/m3 |
(on a dry basis) |
Fuels/feedstock/co-products/residues/wastes |
|
|
|
|
Agricultural residue bales |
|
18,0 |
Animal fat (tallow) |
|
38,8 |
|
Bagasse |
|
17,0 |
|
Bagasse exit mill (dry) |
120 |
17,0 |
|
Bagasse bales (dry) |
165 |
17,0 |
|
Bagasse pellets (dry) |
650 |
17,0 |
|
Barley |
|
17,0 |
|
Biogasoline |
|
44,0 |
|
Biowaste |
|
20,7 |
|
DDGS (barley) |
|
17,8 |
|
DDGS (maize) |
|
19,2 |
|
DDGS (rye) |
|
17,8 |
|
DDGS (triticale) |
|
18,0 |
|
DDGS (wheat) |
|
18,1 |
|
Eucalyptus (SRC) |
|
19,0 |
|
Fatty acids |
|
37,0 |
|
FFB |
|
24,0 |
|
Forestry residues |
|
19,0 |
|
Glycerol |
|
16,0 |
|
Industry residues (wood) |
|
19,0 |
|
Manure |
|
12,0 |
|
Maize (grain only) |
|
17,3 |
|
Maize whole crop |
|
16,9 |
|
Palm kernel meal |
570 |
18,5 |
|
Palm kernel oil |
|
37,0 |
|
Poplar (SRC) |
|
19,0 |
|
Rapeseed |
|
27,0 |
|
Rapeseed oil cake |
|
18,4 |
|
Rye |
|
17,1 |
|
Sawdust |
|
19,0 |
|
Soybeans |
|
23,0 |
|
Soybean oil cake |
|
19,1 |
|
Stemwood (Pine) |
|
19,0 |
|
Straw |
|
17,2 |
|
Straw bales |
125 |
17,2 |
|
Straw chopped |
50 |
17,2 |
|
Straw pellets |
600 |
17,2 |
|
Sugar beet |
|
16,3 |
|
Sugar beet pulp |
|
16,1 |
|
Sugar cane |
|
19,6 |
|
Sunflower seed |
|
27,2 |
|
Sunflower oil cake |
|
18,2 |
|
Triticale |
|
16,9 |
|
Vinasse |
|
14,0 |
|
Waste cooking oil |
|
37,0 |
|
Wheat |
|
17,0 |
|
Wheat straw |
|
17,2 |
parameter: |
GHG emission coefficient |
Fossil energy input |
LHV MJ/kg |
|||||||||
unit: |
gCO2/kg |
gCH4/kg |
(at 0 % water) |
gCO2-eq/kg |
gCO2/MJ |
gCH4/MJ |
gN2O/MJ |
gCO2-eq/MJ |
MJfossil/kg |
MJfossil/MJ |
(on a dry basis) |
|
Conversion inputs |
|
|
|
|
|
|
|
|
|
|
|
|
|
Ammonia |
2 350,6 |
0,00 |
0,0022 |
2 351,3 |
|
|
|
|
42,50 |
|
|
|
Ammonium sulphate ((NH4)2SO4) |
420,9 |
1,29 |
0,0002 |
453,2 |
|
|
|
|
7,56 |
|
|
|
Antifoam (assumed to be propylene glycol) |
3 119,5 |
4,96 |
0,105 |
3 274,8 |
|
|
|
|
34,97 |
|
|
|
Alpha-amylase |
1 000,0 |
0,00 |
0,0000 |
1 000,0 |
|
|
|
|
15,00 |
|
|
|
Gluco-amylase |
7 500,0 |
0,00 |
0,0000 |
7 500,0 |
|
|
|
|
97,00 |
|
|
|
Calcium chloride (CaCl2) |
38,6 |
0,002 |
0,001 |
38,8 |
|
|
|
|
0,50 |
|
|
|
Cyclohexane |
723,0 |
0,00 |
0,0000 |
723,0 |
|
|
|
|
9,90 |
|
|
|
Diammonium phosphate (DAP) |
653,2 |
0,81 |
0,004 |
674,4 |
|
|
|
|
10,23 |
|
|
|
Fuller’s earth |
197,0 |
0,04 |
0,0063 |
199,8 |
|
|
|
|
2,54 |
|
|
|
n-Hexane |
|
|
|
|
80,08 |
0,0146 |
0,0003 |
80,53 |
|
0,3204 |
45,1 |
|
Hydrochloric acid (HCl) |
977,1 |
2,91 |
0,0376 |
1 061,1 |
|
|
|
|
14,84 |
|
|
|
Lubricants |
947,0 |
0,00 |
0,0000 |
947,0 |
|
|
|
|
53,28 |
|
|
|
Magnesium sulphate (MgSO4) |
191,4 |
0,04 |
-0,002 |
191,8 |
|
|
|
|
-3,24 |
|
|
|
Monopotassium phosphate (KH2PO4) |
238,7 |
0,91 |
0,012 |
264,9 |
|
|
|
|
4,43 |
|
|
|
Nitrogen |
52,6 |
0,12 |
0,0024 |
56,4 |
|
|
|
|
1,08 |
|
|
|
Phosphoric acid (H3PO4) |
2 808,9 |
11,36 |
0,1067 |
3 124,7 |
|
|
|
|
28,61 |
|
|
|
Potassium hydroxide (KOH) |
403,0 |
0,40 |
0,0208 |
419,1 |
|
|
|
|
11,47 |
|
|
|
Pure CaO for processes |
1 188,5 |
0,10 |
0,0080 |
1 193,2 |
|
|
|
|
7,87 |
|
|
|
Sodium carbonate (Na2CO3) |
1 133,5 |
4,39 |
0,0060 |
1 245,1 |
|
|
|
|
14,92 |
|
|
|
Sodium chloride (NaCl) |
12,7 |
0,02 |
0,001 |
13,3 |
|
|
|
|
0,23 |
|
|
|
Sodium hydroxide (NaOH) |
485,5 |
1,45 |
0,0271 |
529,7 |
|
|
|
|
10,16 |
|
|
|
Sodium methoxide (Na(CH3O)) |
2 207,7 |
7,56 |
0,0965 |
2 425,5 |
|
|
|
|
45,64 |
|
|
|
SO2 |
52,0 |
0,03 |
0,001 |
53,3 |
|
|
|
|
0,78 |
|
|
|
Sulphuric acid (H2SO4) |
210,2 |
0,24 |
0,0046 |
217,5 |
|
|
|
|
4,02 |
|
|
|
Urea |
1 790,9 |
1,92 |
0,027 |
1 846,6 |
|
|
|
|
31,71 |
|
|
parameter: |
Fuel Efficiency |
Transport exhaust gas emissions |
||
unit: |
MJ/t.km |
gCH4/t.km |
gN2O/t.km |
|
Transport efficiencies – Trucks |
|
|
|
|
|
Truck (40 tonne) for dry product (Diesel) |
0,81 |
0,003 |
0,0015 |
|
Truck (40 tonne) for chips (and similar size dry product) (Diesel) |
0,84 |
0,004 |
0,0016 |
|
Truck (40 tonne) for liquids and pellets (Diesel) |
0,87 |
0,004 |
0,0016 |
|
Truck (40 tonne) for manure (Diesel) |
0,88 |
0,004 |
0,0016 |
|
Truck (40 tonne) for biowaste (Diesel) |
0,84 |
0,004 |
0,0016 |
|
Truck (40 tonne) for sugar cane transport |
1,37 |
0,001 |
0,0039 |
|
Truck (12 tonne) for FFB transport (Diesel) |
2,24 |
0,002 |
0,0015 |
|
Dumpster truck MB2213 for filter mud transport |
3,60 |
0,000 |
0,0000 |
|
Tanker truck MB2318 for vinasse transport |
2,16 |
0,000 |
0,0000 |
|
Tanker truck MB2318 for cane seed transport |
2,61 |
0,000 |
0,0000 |
|
Tanker truck with water cannons for vinasse transport |
0,94 |
|
|
Transport efficiencies – Ships |
|
|
|
|
|
‘Handymax’ bulk carrier (fuel oil) – Grains |
0,10 |
|
|
|
‘Handysize’ bulk carrier (fuel oil) – wood chips with bulk density 221 kg/m3 |
0,26 |
|
|
|
‘Supramax’ bulk carrier (fuel oil) – wood chips with bulk density 221 kg/m3 |
0,16 |
|
|
|
‘Handysize’ bulk carrier (fuel oil) – pellets with bulk density 650 kg/m3 |
0,10 |
|
|
|
‘Supramax’ bulk carrier (fuel oil) – pellets with bulk density 650 kg/m3 |
0,07 |
|
|
|
‘Handysize’ bulk carrier (fuel oil) – agri-residues with low bulk density (125 kg/m3) |
0,43 |
|
|
|
‘Supramax’ bulk carrier (fuel oil) – agri-residues with low bulk density (125 kg/m3) |
0,27 |
|
|
|
‘Handysize’ bulk carrier (fuel oil) – agri-residues with high bulk density (300 kg/m3) |
0,20 |
|
|
|
‘Supramax’ bulk carrier (fuel oil) – agri-residues with high bulk density (300 kg/m3) |
0,13 |
|
|
|
‘Handysize’ bulk carrier (fuel oil) – PKM |
0,13 |
|
|
|
‘Supramax’ bulk carrier (fuel oil) – PKM |
0,07 |
|
|
|
Chemical/product tanker, 12,617 kt (fuel oil) |
0,12 |
|
|
|
Chemical/product tanker, 15 kt (fuel oil) for ethanol transport |
0,17 |
|
|
|
Chemical/product tanker, 15 kt (fuel oil) for FAME and HVO transport |
0,16 |
|
|
|
Chemical/product tanker, 22,56 kt (fuel oil) |
0,10 |
|
|
|
Inland bulk carrier, 8,8 kt (diesel) |
0,32 |
0,093 |
0,0004 |
|
Inland ship for oil transport, 1,2 kt (diesel) |
0,50 |
0,030 |
|
Transport efficiencies – Pipeline and rail |
|
|
|
|
|
Local (10 km) pipeline |
0,00 |
0,000 |
0,0000 |
|
Freight train USA (diesel) |
0,25 |
0,005 |
0,0010 |
|
Rail (electric, MV) |
0,21 |
|
|
Carbon Intensity of electricity produced and consumed in the EU in 2019 [gCO
2
eq/kWh]
With upstream emissions, without emissions from construction
|
CI net electricity production |
CI used electricity HV |
CI used electricity MV |
CI used electricity LV |
Austria |
153 |
238 |
240 |
245 |
Belgium |
204 |
214 |
215 |
219 |
Bulgaria |
493 |
504 |
510 |
532 |
Cyprus |
757 |
768 |
772 |
787 |
Czechia |
518 |
526 |
531 |
549 |
Germany |
389 |
386 |
388 |
398 |
Denmark |
100 |
135 |
136 |
139 |
Estonia |
654 |
468 |
471 |
485 |
Greece |
577 |
585 |
590 |
610 |
Spain |
245 |
248 |
251 |
263 |
Finland |
105 |
127 |
128 |
130 |
France |
74 |
81 |
82 |
86 |
Croatia |
208 |
329 |
333 |
349 |
Hungary |
277 |
307 |
310 |
322 |
Ireland |
349 |
357 |
360 |
374 |
Italy |
352 |
331 |
333 |
343 |
Latvia |
203 |
312 |
315 |
325 |
Lithuania |
79 |
291 |
294 |
305 |
Luxembourg |
93 |
311 |
312 |
316 |
Malta |
455 |
437 |
441 |
454 |
Netherlands |
430 |
415 |
417 |
426 |
Poland |
742 |
715 |
720 |
741 |
Portugal |
268 |
282 |
285 |
299 |
Romania |
388 |
421 |
427 |
454 |
Slovakia |
168 |
316 |
319 |
329 |
Slovenia |
269 |
281 |
283 |
291 |
Sweden |
20 |
25 |
25 |
26 |
EU27 |
288 |
295 |
298 |
308 |
Iceland |
7 |
7 |
7 |
7 |
Norway |
12 |
20 |
20 |
21 |
Switzerland |
32 |
107 |
108 |
112 |
United Kingdom |
271 |
277 |
280 |
292 |
Albania |
0 |
302 |
308 |
332 |
Bosnia Herzegovina |
799 |
766 |
776 |
818 |
Kosovo |
1 099 |
1 067 |
1 097 |
1 224 |
Moldova |
246 |
446 |
453 |
476 |
Montenegro |
472 |
588 |
599 |
646 |
North Macedonia |
794 |
760 |
774 |
831 |
Serbia |
807 |
819 |
833 |
892 |
Turkey |
487 |
508 |
516 |
546 |
Belarus |
449 |
458 |
462 |
479 |
Russia |
459 |
474 |
479 |
496 |
Ukraine |
407 |
419 |
423 |
439 |
|
parameter: |
GHG emission coefficient |
||
|
unit: |
gCH4/MJ |
gN2O/MJ |
gCO2-eq/MJ |
Emissions from machinery operations incl. chipping ( per MJ diesel ) |
|
|
|
|
|
CH4 and N2O emissions from use of diesel (transport) |
0,0008 |
0,0032 |
0,97 |
|
CH4 and N2O emissions from use of diesel (forestry) |
0,0008 |
0,0032 |
0,97 |
|
CH4 and N2O emissions from use of diesel (agriculture) |
0,0013 |
0,0032 |
0,97 |
Emissions from boiler or CHP ( per MJ feedstock ) |
|
|
|
|
|
CH4 and N2O emissions from agricultural residue boiler |
0,0017 |
0,0007 |
0,24 |
|
CH4 and N2O emissions from agricultural residue CHP |
0,0017 |
0,0007 |
0,24 |
|
CH4 and N2O emissions from bagasse boiler |
0,0025 |
0,0012 |
0,43 |
|
CH4 and N2O emissions from bagasse CHP |
0,0025 |
0,0012 |
0,43 |
|
CH4 and N2O emissions from biogas CHP gas engine |
0,3400 |
0,0014 |
8,92 |
|
CH4 and N2O emissions from biogas boiler |
0,0025 |
0,0010 |
0,36 |
|
CH4 and N2O emissions from hard coal CHP |
0,0018 |
0,0050 |
1,53 |
|
CH4 and N2O emissions from lignite CHP |
0,0007 |
0,0028 |
0,86 |
|
CH4 and N2O emissions from NG boiler |
0,0025 |
0,0010 |
0,36 |
|
CH4 and N2O emissions from NG CHP |
0,0042 |
0,0008 |
0,36 |
|
CH4 and N2O emissions from NG gas engine |
0,0030 |
0,0001 |
0,10 |
|
CH4 and N2O emissions from palm shells and fibres boiler |
0,0030 |
0,0040 |
1,27 |
|
CH4 and N2O emissions from palm shells and fibres CHP |
0,0030 |
0,0040 |
1,27 |
|
CH4 and N2O emissions from PKM boiler |
0,0017 |
0,0007 |
0,24 |
|
CH4 and N2O emissions from PKM CHP |
0,0017 |
0,0007 |
0,24 |
|
CH4 and N2O emissions from sawdust boiler |
0,0049 |
0,0010 |
0,41 |
|
CH4 and N2O emissions from straw pellet boiler |
0,0017 |
0,0007 |
0,24 |
|
CH4 and N2O emissions from straw pellet CHP |
0,0017 |
0,0007 |
0,24 |
|
CH4 and N2O emissions from wood chip boiler |
0,0049 |
0,0010 |
0,41 |
|
CH4 and N2O emissions from wood chip CHP |
0,0049 |
0,0010 |
0,41 |
|
CH4 and N2O emissions from wood pellet boiler |
0,0030 |
0,0006 |
0,25 |
|
CH4 and N2O emissions from wood pellet CHP |
0,0030 |
0,0006 |
0,25 |
|
CH4 and N2O emissions from liquid fuel boiler |
0,0009 |
0,0004 |
0,14 |
|
CH4 and N2O emissions from wood pellet co-combustion (fluidised bed coal-fired power plant) |
0,0010 |
0,0610 |
18,20 |
|
CH4 and N2O emissions from wood pellet co-combustion (pulverised coal-fired power plant) |
0,0009 |
0,0014 |
0,44 |
|
|
|
|
|
Emissions from digestate storage ( per MJ biogas ) |
|
|
|
|
|
CH4 and N2O emissions from open biowaste digestate storage |
0,4930 |
0,0319 |
21,82 |
|
CH4 and N2O emissions from open maize digestate storage |
0,4422 |
0,0082 |
13,51 |
|
CH4 and N2O emissions from open manure digestate storage |
1,9917 |
0,0663 |
69,56 |
|
GHG emission coefficient |
||||||||
|
gCO2/kg |
gCH4/kg |
gN2O/kg |
gCO2-eq/kg |
gCO2/MJ |
gCH4/MJ |
gN2O/MJ |
gCO2-eq/MJ |
|
Manure methane credits ( per MJ biogas ) |
|
|
|
|
|
|
|
|
|
|
CH4 and N2O emission credits for manure |
|
|
|
|
|
1,4700 |
0,0279 |
45,05 |
|
|
|
|
|
|
|
|
|
|
|
No emissions |
0,0 |
0,00 |
0,0000 |
0,0 |
0,00 |
0,0000 |
0,0000 |
0,00 |